Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.7 Substitution Method - Exercises - Page 275: 33

Answer

$$ \sqrt{x^{2}+9 }+C$$

Work Step by Step

Given $$\int \frac{x}{\sqrt{x^{2}+9}} d x $$ Let $$ u= x^{2}+9\ \ \ \Rightarrow \ \ \ du=(2x)dx$$ Then \begin{aligned} \int \frac{x}{\sqrt{x^{2}+9}} d x &=\frac{1}{2} \int \frac{d u}{\sqrt{u}} \\ &=\frac{1}{2} \int u^{-1 / 2} d u \\ &=\frac{1}{2}\left(2 u^{1 / 2}+C\right) \\ &=u^{1 / 2}+C \\ &= \sqrt{x^{2}+9 }+C\end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.