Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.7 Substitution Method - Exercises - Page 275: 32

Answer

$$\frac{2}{7} ( x^{2}+2 x)^{7 / 4}+C$$

Work Step by Step

Given $$ \int(x+1)\left(x^{2}+2 x\right)^{3 / 4} d x$$ Let $$ u= x^{2}+2 x\ \ \ \Rightarrow \ \ \ du=(2x+2)dx$$ Then \begin{aligned} \int(x+1)\left(x^{2}+2 x\right)^{3 / 4} d x &=\frac{1}{2} \int u^{3 / 4} d u \\ &=\frac{1}{2}\left(\frac{4}{7} u^{7 / 4}+C\right) \\ &=\frac{2}{7} u^{7 / 4}+C\\ &= \frac{2}{7} ( x^{2}+2 x)^{7 / 4}+C\end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.