Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.7 Substitution Method - Exercises - Page 275: 45

Answer

$$\frac{4}{9} (x+1)^{9 / 4}+\frac{4}{5} (x+1)^{5 / 4}+C $$

Work Step by Step

Given $$ \int(x+2)(x+1)^{1 / 4} d x $$ Let $$u=x+1\ \ \ \Rightarrow \ \ \ du=dx $$ Then \begin{aligned} \int(x+2)(x+1)^{1 / 4} d x &=\int(u+1) u^{1 / 4} d u \\ &=\int\left(u^{5 / 4}+u^{1 / 4}\right) d u \\ &=\frac{4}{9} u^{9 / 4}+\frac{4}{5} u^{5 / 4}+C\\ &= \frac{4}{9} (x+1)^{9 / 4}+\frac{4}{5} (x+1)^{5 / 4}+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.