Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.7 Substitution Method - Exercises - Page 275: 46

Answer

$$ \frac{1}{7} (x^{2}-1)^{7 / 2}+\frac{1}{5}(x^{2}-1)^{5 / 2}+C$$

Work Step by Step

Given $$ \int\left(x^{3}\right)\left(x^{2}-1\right)^{3 / 2} d x $$ Let $$u=x^{2}-1\ \ \ \Rightarrow \ \ \ du=2xdx $$ Then \begin{aligned} \int\left(x^{3}\right)\left(x^{2}-1\right)^{3 / 2} d x &=\frac{1}{2} \int(u+1) u^{3 / 2} d u \\ &=\frac{1}{2} \int\left(u^{5 / 2}+u^{3 / 2}\right) d u \\ &=\frac{1}{2}\left(\frac{2}{7} u^{7 / 2}+\frac{2}{5} u^{5 / 2}+C\right) \\ &=\frac{1}{7} u^{7 / 2}+\frac{1}{5} u^{5 / 2}+C\\ &= \frac{1}{7} (x^{2}-1)^{7 / 2}+\frac{1}{5}(x^{2}-1)^{5 / 2}+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.