Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.3 The Indefinite Integral - Exercises - Page 252: 39

Answer

$$\frac{1}{3}\sin(3 \theta)-2\tan\left(\frac{\theta}{4}\right)+c. $$

Work Step by Step

Since $(\sin(3 \theta))'= 3\cos (3 \theta)$ and $(\tan\left(\frac{\theta}{4}\right))'=\frac{1}{4}\sec ^{2}\left(\frac{\theta}{4}\right)$ , we have $$ \int\left(\cos (3 \theta)-\frac{1}{2} \sec ^{2}\left(\frac{\theta}{4}\right)\right) d \theta\\ =\frac{1}{3}\sin(3 \theta)-\frac{4}{2}\tan\left(\frac{\theta}{4}\right)+c\\ =\frac{1}{3}\sin(3 \theta)-2\tan\left(\frac{\theta}{4}\right)+c. $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.