Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.7 Limits at Infinity - Exercises - Page 83: 37

Answer

$\infty$

Work Step by Step

We evaluate the limit \begin{aligned} \lim_{x\to\infty}(2 \sqrt{x}-\sqrt{x+2} )&=\lim_{x\to\infty}(2 \sqrt{x}-\sqrt{x+2}) \frac{2 \sqrt{x}+\sqrt{x+2}}{2 \sqrt{x}+\sqrt{x+2}} \\ &=\lim_{x\to\infty}\frac{4 x-(x+2)}{2 \sqrt{x}+\sqrt{x+2}}\\ &=\lim_{x\to\infty}\frac{3 x-2}{2 \sqrt{x}+\sqrt{x+2}}\\ &=\infty \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.