Answer
$$0$$
Work Step by Step
We evaluate the limit:
\begin{aligned}
& \lim_{x\to\infty}\sqrt{4 x^{4}+9 x}-2 x^{2} \\
&=\lim_{x\to\infty}\left(\sqrt{4 x^{4}+9 x}-2 x^{2}\right) \frac{\sqrt{4 x^{4}+9 x}+2 x^{2}}{\sqrt{4 x^{4}+9 x}+2 x^{2}} \\ &=\lim_{x\to\infty}\frac{\left(4 x^{4}+9 x\right)-4 x^{4}}{\sqrt{4 x^{4}+9 x}+2 x^{2}}\\
&=\lim_{x\to\infty}\frac{9 x}{\sqrt{4 x^{4}+9 x}+2 x^{2}} \\
&=0\end{aligned}