Answer
$2$
Work Step by Step
We have
\begin{align*} \lim _{x \rightarrow- \infty}\frac{8x^2+7x^{1/3}}{\sqrt{16x^4+6}} &= \lim _{x \rightarrow- \infty}\frac{8+\frac{7}{x^{5/3}}}{\sqrt{16+\frac{6}{x^4}}} \\ &=\frac{8+0}{\sqrt{16+0}} \\
&=\frac{8}{4}=2.
\end{align*}