Answer
$-\frac{4}{5}.$
Work Step by Step
We have
\begin{align*} \lim _{x \rightarrow- \infty}\frac{4x-3}{\sqrt{25x^2+4x}} &= \lim _{x \rightarrow- \infty}\frac{x(4-\frac{3}{x})}{x\sqrt{25+\frac{4}{x}}} \\ &=\frac{4-0}{\sqrt{25+0}} \\
&=\frac{4}{5}.
\end{align*}