Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.7 Limits at Infinity - Exercises - Page 83: 36

Answer

$\infty$

Work Step by Step

\begin{aligned} \lim _{x \rightarrow \infty}\left(\sqrt{9 x^{3}+x}-x^{\frac{3}{2}}\right) &=\lim _{x \rightarrow \infty}\left(\sqrt{9 x^{3}+x}-x^{\frac{3}{2}}\right) \times \frac{\sqrt{9 x^{3}+x}+x^{\frac{3}{2}}}{\sqrt{9 x^{3}+x}+x^{\frac{3}{2}}}\\ &=\lim _{x \rightarrow \infty} \frac{9 x^{3}+x-x^{3}}{\sqrt{9 x^{3}+x}+x^{\frac{3}{2}}}\\ &=\lim _{x \rightarrow \infty} \frac{8 x^{3}+x}{\sqrt{9 x^{3}+x}+x^{\frac{3}{2}}}\\ &=\lim _{x \rightarrow \infty} \frac{x^{3}\left(8+\frac{1}{x^{2}}\right)}{\sqrt{x^{3}\left(9+\frac{1}{x^{2}}\right)}+x^{\frac{3}{2}}}\\ &=\lim _{x \rightarrow \infty} \frac{x^{3}\left(8+\frac{1}{x^{2}}\right)}{x^{\frac{3}{2}} \sqrt{\left(9+\frac{1}{x^{2}}\right)}+x^{\frac{3}{2}}}\\ &=\lim _{x \rightarrow \infty} \frac{x^{3}\left(8+\frac{1}{x^{2}}\right)}{x^{\frac{3}{2}}(\sqrt{\left(9+\frac{1}{x^{2}}\right)}+1)}\\ &=\lim _{x \rightarrow \infty} \frac{x^{\frac{3}{2}}\left(8+\frac{1}{x^{2}}\right)}{(\sqrt{\left(9+\frac{1}{x^{2}}\right)}+1)}\\ &=\frac{\infty(8+0)}{\sqrt{9+0}+1}=\frac{\infty}{3+1}=\infty \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.