Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.6 Change of Variables - Exercises - Page 906: 46

Answer

We verify properties (1) and (2), and show that any map satisfying these properties is linear.

Work Step by Step

Part 1. We verify properties (1) and (2) for linear functions Let $G$ be a linear function in the form: $G\left( {u,v} \right) = \left( {Au + Cv,Bu + Dv} \right)$ Evaluate $G\left( {{u_1} + {u_2},{v_1} + {v_2}} \right)$: $G\left( {{u_1} + {u_2},{v_1} + {v_2}} \right) = \left( {A\left( {{u_1} + {u_2}} \right) + C\left( {{v_1} + {v_2}} \right),B\left( {{u_1} + {u_2}} \right) + D\left( {{v_1} + {v_2}} \right)} \right)$ $ = \left( {A{u_1} + C{v_1} + A{u_2} + C{v_2},B{u_1} + D{v_1} + B{u_2} + D{v_2}} \right)$ $ = \left( {A{u_1} + C{v_1},B{u_1} + D{v_1}} \right) + \left( {A{u_2} + C{v_2},B{u_2} + D{v_2}} \right)$ Since $G\left( {{u_1},{v_1}} \right) = \left( {A{u_1} + C{v_1},B{u_1} + D{v_1}} \right)$ and $G\left( {{u_2},{v_2}} \right) = \left( {A{u_2} + C{v_2},B{u_2} + D{v_2}} \right)$, so $G\left( {{u_1} + {u_2},{v_1} + {v_2}} \right) = G\left( {{u_1},{v_1}} \right) + G\left( {{u_2},{v_2}} \right)$ This verifies property (1). Evaluate $G\left( {cu,cv} \right)$ for any constant $c$: $G\left( {cu,cv} \right) = \left( {A\left( {cu} \right) + C\left( {cv} \right),B\left( {cu} \right) + D\left( {cv} \right)} \right)$ $ = c\left( {Au + Cv,Bu + Dv} \right)$ So, $G\left( {cu,cv} \right) = cG\left( {u,v} \right)$. This verifies property (2). Part 2. We show that any map satisfying properties (1) and (2) is linear. Let $G$ be a map such that $G\left( {u,v} \right) = \left( {\phi \left( {u,v} \right),\psi \left( {u,v} \right)} \right)$, where $\phi $ and $\psi $ are functions of $u$ and $v$. Suppose that $G$ is a map that satisfies properties (2) such that $G\left( {cu,cv} \right) = cG\left( {u,v} \right)$ By definition, the left-hand side and the right-hand side become: $\left( {\phi \left( {cu,cv} \right),\psi \left( {cu,cv} \right)} \right) = c\left( {\phi \left( {u,v} \right),\psi \left( {u,v} \right)} \right)$ $\left( {\phi \left( {cu,cv} \right),\psi \left( {cu,cv} \right)} \right) = \left( {c\phi \left( {u,v} \right),c\psi \left( {u,v} \right)} \right)$ Thus, $\phi \left( {cu,cv} \right) = c\phi \left( {u,v} \right)$, ${\ \ \ \ }$ $\psi \left( {cu,cv} \right) = c\psi \left( {u,v} \right)$ This implies that $\phi $ and $\psi $ are linear functions of $u$ and $v$. So, we can write: $\phi \left( {u,v} \right) = Au + Bv$, ${\ \ \ \ }$ $\psi \left( {u,v} \right) = Cu + Dv$, where $A$, $B$, $C$, and $D$ are constants. Thus, $G\left( {u,v} \right) = \left( {Au + Cv,Bu + Dv} \right)$ In part (1) above we have shown that $G\left( {u,v} \right) = \left( {Au + Cv,Bu + Dv} \right)$ satisfies properties (1). By definition of linearity, $G$ is a linear map. Hence, we conclude that any map satisfying properties (1) and (2) is linear.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.