Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.6 Change of Variables - Exercises - Page 906: 36

Answer

The area of the region enclosed by the ellipse is $ 12\pi $.

Work Step by Step

Let ${\cal D}$ denote the region enclosed by the ellipse ${x^2} + 2xy + 2{y^2} - 4y = 8$. We have the relations: $u=x+y$, $v=y-2$. Subtracting $v$ from $u$ gives $u - v = x + 2$ So, $x=-2+u-v$. Substituting $x=-2+u-v$ in $u$ gives $u = - 2 + u - v + y$ $y=2+v$ Thus, we obtain the linear mapping: $G\left( {u,v} \right) = \left( { - 2 + u - v,2 + v} \right)$. Evaluate the Jacobian of $G$: ${\rm{Jac}}\left( G \right) = \left| {\begin{array}{*{20}{c}} {\frac{{\partial x}}{{\partial u}}}&{\frac{{\partial x}}{{\partial v}}}\\ {\frac{{\partial y}}{{\partial u}}}&{\frac{{\partial y}}{{\partial v}}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} 1&{ - 1}\\ 0&1 \end{array}} \right| = 1$ Write the equation of the ellipse: ${x^2} + 2xy + 2{y^2} - 4y - 8 = 0$ (1) ${\ \ \ \ \ }$ ${\left( {x + y} \right)^2} - {y^2} + 2{\left( {y - 1} \right)^2} - 10 = 0$ Substituting $x=-2+u-v$ and $y=2+v$ in equation (1) gives ${u^2} - {\left( {2 + v} \right)^2} + 2{\left( {1 + v} \right)^2} - 10 = 0$ ${u^2} - 4 - 4v - {v^2} + 2 + 4v + 2{v^2} - 10 = 0$ ${u^2} + {v^2} - 12 = 0$ Notice that ${u^2} + {v^2} = 12$ is the equation of the circle of radius $\sqrt {12} $. Thus, we conclude that the mapping $G\left( {u,v} \right) = \left( { - 2 + u - v,2 + v} \right)$ maps ${{\cal D}_0}$, the disk of radius $\sqrt {12} $ defined by ${u^2} + {v^2} = 12$ to the ellipse ${x^2} + 2xy + 2{y^2} - 4y = 8$ in the $xy$-plane. This is illustrated in the figure attached. Using the Change of Variables Formula, we evaluate the area of ${\cal D}$: ${\rm{Area}}\left( {\cal D} \right) = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} {\rm{d}}x{\rm{d}}y = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_0}}^{} \left| {Jac\left( G \right)} \right|{\rm{d}}u{\rm{d}}v$ $ = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_0}}^{} {\rm{d}}u{\rm{d}}v$ Since $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_0}}^{} {\rm{d}}u{\rm{d}}v$ gives the area of the disk of radius $\sqrt {12} $, so ${\rm{Area}}\left( {\cal D} \right) = 12\pi $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.