Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.6 Change of Variables - Exercises - Page 906: 33

Answer

We show that the domain ${\cal D}$ is bounded by $x=0$, $y=0$, and ${y^2} = 4 - 4x$. This is illustrated in the figure attached. $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \sqrt {{x^2} + {y^2}} {\rm{d}}x{\rm{d}}y = \frac{{56}}{{45}}$

Work Step by Step

The triangle ${{\cal D}_0} = \left\{ {\left( {u,v} \right)|0 \le v \le u \le 1} \right\}$ is bounded left by $u=0$ and bounded right by $u=1$. Whereas, the lower and upper boundaries are $v=0$ and $v=u$, respectively. Thus, it can be described as a vertically simple region given by ${{\cal D}_0} = \left\{ {\left( {u,v} \right)|0 \le u \le 1,0 \le v \le u} \right\}$ Step 1. Find the image of the boundary $0 \le u \le 1$ a. The image of $u=0$ is $T\left( {0,v} \right) = \left( { - {v^2},0} \right)$ So, $x = - {v^2}$, $y=0$. Since $x \le 0$, $y=0$, the image of $u=0$ is the negative $x$-axis in the $xy$-plane. b. The image of $u=1$ is $T\left( {1,v} \right) = \left( {1 - {v^2},2v} \right)$. So, $x = 1 - {v^2}$, $y = 2v$. Using $y = 2v$, we get $v = \frac{y}{2}$. Substituting $v = \frac{y}{2}$ in $x = 1 - {v^2}$ gives $x = 1 - \frac{{{y^2}}}{4}$. Thus, the image of $u=1$ is the curve ${y^2} = 4 - 4x$. We conclude that the image of $0 \le u \le 1$ in ${\cal D}$ are the boundaries $y=0$ and the curve ${y^2} = 4 - 4x$. Step 2. Find the image of the boundary $0 \le v \le u$ a. The image of $v=0$ is $T\left( {u,0} \right) = \left( {{u^2},0} \right)$. So, $x = {u^2}$, $y=0$. Since $x \ge 0$, $y=0$, the image of $v=0$ is the positive $x$-axis in the $xy$-plane. b. The image of $v=u$ is $T\left( {u,u} \right) = \left( {0,2{u^2}} \right)$. So, $x=0$, $y = 2{u^2}$. Since $x=0$ and $y \ge 0$, the image of $v=u$ is the positive $y$-axis. Hence, the domain ${\cal D}$ is bounded by $x=0$, $y=0$, and ${y^2} = 4 - 4x$. Step 3. Evaluate the Jacobian of $T\left( {u,v} \right) = \left( {{u^2} - {v^2},2uv} \right)$: ${\rm{Jac}}\left( T \right) = \left| {\begin{array}{*{20}{c}} {\frac{{\partial x}}{{\partial u}}}&{\frac{{\partial x}}{{\partial v}}}\\ {\frac{{\partial y}}{{\partial u}}}&{\frac{{\partial y}}{{\partial v}}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} {2u}&{ - 2v}\\ {2v}&{2u} \end{array}} \right| = 4{u^2} + 4{v^2}$ Write $f\left( {x,y} \right) = \sqrt {{x^2} + {y^2}} $ $f\left( {x\left( {u,v} \right),y\left( {u,v} \right)} \right) = \sqrt {{{\left( {{u^2} - {v^2}} \right)}^2} + 4{u^2}{v^2}} $ $f\left( {x\left( {u,v} \right),y\left( {u,v} \right)} \right) = \sqrt {{u^4} + 2{u^2}{v^2} + {v^4}} = \sqrt {{{\left( {{u^2} + {v^2}} \right)}^2}} = {u^2} + {v^2}$ Using the Change of Variables Formula, we evaluate: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}x{\rm{d}}y = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} f\left( {x\left( {u,v} \right),y\left( {u,v} \right)} \right)\left| {Jac\left( G \right)} \right|{\rm{d}}u{\rm{d}}v$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \sqrt {{x^2} + {y^2}} {\rm{d}}x{\rm{d}}y = 4\mathop \smallint \limits_{u = 0}^1 \mathop \smallint \limits_{v = 0}^u {\left( {{u^2} + {v^2}} \right)^2}{\rm{d}}v{\rm{d}}u$ $ = 4\mathop \smallint \limits_{u = 0}^1 \mathop \smallint \limits_{v = 0}^u \left( {{u^4} + 2{u^2}{v^2} + {v^4}} \right){\rm{d}}v{\rm{d}}u$ $ = 4\mathop \smallint \limits_{u = 0}^1 \left( {\left( {{u^4}v + \frac{2}{3}{u^2}{v^3} + \frac{1}{5}{v^5}} \right)|_0^u} \right){\rm{d}}u$ $ = 4\mathop \smallint \limits_{u = 0}^1 \left( {{u^5} + \frac{2}{3}{u^5} + \frac{1}{5}{u^5}} \right){\rm{d}}u$ $ = 4\mathop \smallint \limits_{u = 0}^1 \left( {\frac{{28}}{{15}}{u^5}} \right){\rm{d}}u = \frac{{56}}{{45}}\left( {{u^6}|_0^1} \right) = \frac{{56}}{{45}}$ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \sqrt {{x^2} + {y^2}} {\rm{d}}x{\rm{d}}y = \frac{{56}}{{45}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.