Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.6 Change of Variables - Exercises - Page 906: 44

Answer

We prove that ${\rm{Volume}}\left( {\cal W} \right) = abc \times {\rm{Volume}}\left( {{{\cal W}_0}} \right)$, where ${\cal W}$ and ${{\cal W}_0}$ denote the ellipsoid and the unit sphere, respectively. ${\rm{Volume}}\left( {\cal W} \right) = \frac{4}{3}\pi abc$

Work Step by Step

Write $x = au$, $y = bv$, and $z = cw$. So, $u = \frac{x}{a}$, ${\ \ \ \ }$ $v = \frac{y}{b}$, ${\ \ \ \ }$ $w = \frac{z}{c}$ Then the interior of the ellipsoid ${\left( {\frac{x}{a}} \right)^2} + {\left( {\frac{y}{b}} \right)^2} + {\left( {\frac{z}{c}} \right)^2} \le 1$ corresponds to the disk ${u^2} + {v^2} + {w^2} \le 1$ in the $\left( {u,v,w} \right)$-space. Thus, we can use $G\left( {u,v,w} \right) = \left( {au,bv,cw} \right)$ to map the unit sphere ${u^2} + {v^2} + {w^2} \le 1$ onto the interior of the ellipsoid ${\left( {\frac{x}{a}} \right)^2} + {\left( {\frac{y}{b}} \right)^2} + {\left( {\frac{z}{c}} \right)^2} \le 1$. Evaluate the Jacobian of $G\left( {u,v,w} \right) = \left( {au,bv,cw} \right)$: ${\rm{Jac}}\left( G \right) = \left| {\begin{array}{*{20}{c}} {\frac{{\partial x}}{{\partial u}}}&{\frac{{\partial x}}{{\partial v}}}&{\frac{{\partial x}}{{\partial w}}}\\ {\frac{{\partial y}}{{\partial u}}}&{\frac{{\partial y}}{{\partial v}}}&{\frac{{\partial y}}{{\partial w}}}\\ {\frac{{\partial z}}{{\partial u}}}&{\frac{{\partial z}}{{\partial v}}}&{\frac{{\partial z}}{{\partial w}}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} a&0&0\\ 0&b&0\\ 0&0&c \end{array}} \right| = abc$ Let ${{\cal W}_0}$ denote the region of the unit sphere and ${\cal W}$ denote the region of the ellipsoid. Using the Change of Variables Formula, we evaluate the volume of ${\cal W}$: ${\rm{Volume}}\left( {\cal W} \right) = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} {\rm{d}}x{\rm{d}}y{\rm{d}}z = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal W}_0}}^{} \left| {Jac\left( G \right)} \right|{\rm{d}}u{\rm{d}}v{\rm{d}}w$ $ = abc\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal W}_0}}^{} {\rm{d}}u{\rm{d}}v{\rm{d}}w$ Since ${\rm{Volume}}\left( {{{\cal W}_0}} \right) = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal W}_0}}^{} {\rm{d}}u{\rm{d}}v{\rm{d}}w$, so ${\rm{Volume}}\left( {\cal W} \right) = abc \times {\rm{Volume}}\left( {{{\cal W}_0}} \right)$ Hence, the volume of the ellipsoid ${\left( {\frac{x}{a}} \right)^2} + {\left( {\frac{y}{b}} \right)^2} + {\left( {\frac{z}{c}} \right)^2} = 1$ is equal to $abc$ $ \times $ the volume of the unit sphere. The volume of the unit sphere is $\frac{4}{3}\pi $, so ${\rm{Volume}}\left( {\cal W} \right) = \frac{4}{3}\pi abc$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.