Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.6 Change of Variables - Exercises - Page 906: 41

Answer

(a) we show that the mapping $u = xy$, $v = x - y$ maps ${\cal D}$ to the rectangle ${\cal R} = \left[ {2,4} \right] \times \left[ {0,3} \right]$. (b) $\frac{{\partial \left( {x,y} \right)}}{{\partial \left( {u,v} \right)}} = - \frac{1}{{x + y}}$ (c) we show that $I$ is equal to the integral of $f\left( {u,v} \right) = v$ over ${\cal R}$. $I = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} v{\rm{d}}u{\rm{d}}v$ $I=9$

Work Step by Step

(a) From the domain description of ${\cal D}$, we obtain: $2 \le xy \le 4$, ${\ \ \ \ }$ $0 \le x - y \le 3$, ${\ \ \ \ }$ $x \ge 0$, ${\ \ \ \ }$ $y \ge 0$ Since $u = xy$, $v = x - y$, so $2 \le u \le 4$, ${\ \ \ \ \ }$ $0 \le v \le 3$ Hence, the mapping $u = xy$, $v = x - y$ maps ${\cal D}$ to the rectangle ${\cal R} = \left[ {2,4} \right] \times \left[ {0,3} \right]$. (b) Denote the mapping $u = xy$, $v = x - y$: $F\left( {x,y} \right) = \left( {xy,x - y} \right)$ Evaluate the Jacobian of $F$: ${\rm{Jac}}\left( F \right) = \frac{{\partial \left( {u,v} \right)}}{{\partial \left( {x,y} \right)}} = \left| {\begin{array}{*{20}{c}} {\frac{{\partial u}}{{\partial x}}}&{\frac{{\partial u}}{{\partial y}}}\\ {\frac{{\partial v}}{{\partial x}}}&{\frac{{\partial v}}{{\partial y}}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} y&x\\ 1&{ - 1} \end{array}} \right| = - \left( {x + y} \right)$ By Eq. (14), ${\rm{Jac}}\left( G \right) = {\rm{Jac}}{\left( F \right)^{ - 1}} = - \frac{1}{{x + y}}$ So, ${\rm{Jac}}\left( G \right) = \frac{{\partial \left( {x,y} \right)}}{{\partial \left( {u,v} \right)}} = - \frac{1}{{x + y}}$. (c) Using the Change of Variables Formula, write $I = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \left( {{x^2} - {y^2}} \right){\rm{d}}x{\rm{d}}y = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} \left( {{x^2} - {y^2}} \right)\left| {Jac\left( G \right)} \right|{\rm{d}}u{\rm{d}}v$ $ = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} \left( {{x^2} - {y^2}} \right)\left( {\frac{1}{{x + y}}} \right){\rm{d}}u{\rm{d}}v$ $ = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} \left( {x - y} \right){\rm{d}}u{\rm{d}}v$ Since $v = x - y$, so $I = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} v{\rm{d}}u{\rm{d}}v$. This implies that $I$ is equal to the integral of $f\left( {u,v} \right) = v$ over ${\cal R}$. Evaluate $I$: $I = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \left( {{x^2} - {y^2}} \right){\rm{d}}x{\rm{d}}y = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} v{\rm{d}}u{\rm{d}}v$ $ = \mathop \smallint \limits_{v = 0}^3 \mathop \smallint \limits_{u = 2}^4 v{\rm{d}}u{\rm{d}}v$ $ = \left( {\mathop \smallint \limits_{v = 0}^3 v{\rm{d}}v} \right)\left( {\mathop \smallint \limits_{u = 2}^4 {\rm{d}}u} \right) = \frac{1}{2}\left( {{v^2}|_0^3} \right)\left( 2 \right) = 9$ So, $I=9$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.