Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.6 Change of Variables - Exercises - Page 906: 40

Answer

Please see the figure attached. (a) ${\rm{Jac}}\left( G \right) = {\rm{Jac}}{\left( F \right)^{ - 1}} = \frac{1}{3}$ (b) $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} {{\rm{e}}^{x + y}}{\rm{d}}x{\rm{d}}y \simeq 86.47$

Work Step by Step

(a) We sketch the domain: ${\cal D} = \left\{ {\left( {x,y} \right)|1 \le x + y \le 4, - 4 \le y - 2x \le 1} \right\}$ We have the map $F\left( {x,y} \right) = \left( {x + y,y - 2x} \right)$. So, $u=x+y$ and $v=y-2x$. Evaluate the Jacobian of $F$: ${\rm{Jac}}\left( F \right) = \left| {\begin{array}{*{20}{c}} {\frac{{\partial u}}{{\partial x}}}&{\frac{{\partial u}}{{\partial y}}}\\ {\frac{{\partial v}}{{\partial x}}}&{\frac{{\partial v}}{{\partial y}}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} 1&1\\ { - 2}&1 \end{array}} \right| = 3$ By Eq. (14), ${\rm{Jac}}\left( G \right) = {\rm{Jac}}{\left( F \right)^{ - 1}} = \frac{1}{3}$ (b) From the description of ${\cal D}$, we obtain: $1 \le x + y \le 4$, ${\ \ \ \ \ }$ $ - 4 \le y - 2x \le 1$ Let ${\cal R}$ denote the domain in the $uv$-plane such that $F:{\cal D} \to {\cal R}$. Since $u=x+y$ and $v=y-2x$, so the domain description of ${\cal R}$: $1 \le u \le 4$, ${\ \ \ \ \ }$ $ - 4 \le v \le 1$ Using the Change of Variables Formula, we compute: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}x{\rm{d}}y = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} f\left( {x\left( {u,v} \right),y\left( {u,v} \right)} \right)\left| {Jac\left( G \right)} \right|{\rm{d}}u{\rm{d}}v$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} {{\rm{e}}^{x + y}}{\rm{d}}x{\rm{d}}y = \frac{1}{3}\mathop \smallint \limits_{v = - 4}^1 \mathop \smallint \limits_{u = 1}^4 {{\rm{e}}^u}{\rm{d}}u{\rm{d}}v$ $ = \frac{1}{3}\left( {\mathop \smallint \limits_{v = - 4}^1 {\rm{d}}v} \right)\left( {\mathop \smallint \limits_{u = 1}^4 {{\rm{e}}^u}{\rm{d}}u} \right)$ $ = \frac{1}{3}\left( 5 \right)\left( {{{\rm{e}}^u}|_1^4} \right) = \frac{5}{3}\left( {{{\rm{e}}^4} - {\rm{e}}} \right) \simeq 86.47$ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} {{\rm{e}}^{x + y}}{\rm{d}}x{\rm{d}}y \simeq 86.47$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.