Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.6 Change of Variables - Exercises - Page 906: 35

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} {{\rm{e}}^{9{x^2} + 4{y^2}}}{\rm{d}}x{\rm{d}}y \simeq 2.26 \times {10^{15}}$

Work Step by Step

We learn from Exercise 34, the mapping $G\left( {u,v} \right) = \left( {au,bv} \right)$ maps the disk ${u^2} + {v^2} \le 1$ onto the interior of the ellipse ${\left( {\frac{x}{a}} \right)^2} + {\left( {\frac{y}{b}} \right)^2} \le 1$. Thus, $G\left( {u,v} \right) = \left( {2u,3v} \right)$ maps the disk ${u^2} + {v^2} \le 1$ onto the interior of the ellipse ${\left( {\frac{x}{2}} \right)^2} + {\left( {\frac{y}{3}} \right)^2} \le 1$. Evaluate the Jacobian of $G\left( {u,v} \right) = \left( {2u,3v} \right)$: ${\rm{Jac}}\left( G \right) = \left| {\begin{array}{*{20}{c}} {\frac{{\partial x}}{{\partial u}}}&{\frac{{\partial x}}{{\partial v}}}\\ {\frac{{\partial y}}{{\partial u}}}&{\frac{{\partial y}}{{\partial v}}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} 2&0\\ 0&3 \end{array}} \right| = 6$ Write $f\left( {x,y} \right) = {{\rm{e}}^{9{x^2} + 4{y^2}}}$ $f\left( {x\left( {u,v} \right),y\left( {u,v} \right)} \right) = {{\rm{e}}^{36{u^2} + 36{v^2}}} = {{\rm{e}}^{36\left( {{u^2} + {v^2}} \right)}}$ Let ${{\cal D}_0}$ denote the domain of the disk ${u^2} + {v^2} \le 1$. Using the Change of Variables Formula, we evaluate: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}x{\rm{d}}y = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_0}}^{} f\left( {x\left( {u,v} \right),y\left( {u,v} \right)} \right)\left| {Jac\left( G \right)} \right|{\rm{d}}u{\rm{d}}v$ (1) ${\ \ \ \ \ }$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} {{\rm{e}}^{9{x^2} + 4{y^2}}}{\rm{d}}x{\rm{d}}y = 6\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_0}}^{} {{\rm{e}}^{36\left( {{u^2} + {v^2}} \right)}}{\rm{d}}u{\rm{d}}v$ To evaluate this integral, we use polar coordinates. So, the description of ${{\cal D}_0}$ in polar coordinates is ${{\cal D}_0} = \left\{ {\left( {r,\theta } \right)|0 \le r \le 1,0 \le \theta \le 2\pi } \right\}$ Thus, integral (1) becomes $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} {{\rm{e}}^{9{x^2} + 4{y^2}}}{\rm{d}}x{\rm{d}}y = 6\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = 0}^1 {{\rm{e}}^{36{r^2}}}r{\rm{d}}r{\rm{d}}\theta $ $ = \frac{1}{{12}}\mathop \smallint \limits_{\theta = 0}^{2\pi } \left( {{{\rm{e}}^{36{r^2}}}|_0^1} \right){\rm{d}}\theta $ $ = \frac{1}{{12}}\left( {{{\rm{e}}^{36}} - 1} \right)\mathop \smallint \limits_{\theta = 0}^{2\pi } {\rm{d}}\theta $ $ = \frac{\pi }{6}\left( {{{\rm{e}}^{36}} - 1} \right) \simeq 2.26 \times {10^{15}}$ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} {{\rm{e}}^{9{x^2} + 4{y^2}}}{\rm{d}}x{\rm{d}}y \simeq 2.26 \times {10^{15}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.