Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.6 Change of Variables - Exercises - Page 906: 34

Answer

We prove the area of the ellipse is $\pi ab$.

Work Step by Step

Write $x = au$ and $y = bv$. So, $u = \frac{x}{a}$ and $v = \frac{y}{b}$. Then the interior of the ellipse ${\left( {\frac{x}{a}} \right)^2} + {\left( {\frac{y}{b}} \right)^2} \le 1$ correspond to the disk ${u^2} + {v^2} \le 1$ in the $uv$-plane. Thus, we can use $G\left( {u,v} \right) = \left( {au,bv} \right)$ to map the disk ${u^2} + {v^2} \le 1$ onto the interior of the ellipse ${\left( {\frac{x}{a}} \right)^2} + {\left( {\frac{y}{b}} \right)^2} \le 1$. Evaluate the Jacobian of $G\left( {u,v} \right) = \left( {au,bv} \right)$: ${\rm{Jac}}\left( G \right) = \left| {\begin{array}{*{20}{c}} {\frac{{\partial x}}{{\partial u}}}&{\frac{{\partial x}}{{\partial v}}}\\ {\frac{{\partial y}}{{\partial u}}}&{\frac{{\partial y}}{{\partial v}}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} a&0\\ 0&b \end{array}} \right| = ab$ Let ${{\cal D}_0}$ denote the domain of the disk and ${\cal D}$ denote the region of the ellipse. Using the Change of Variables Formula, we evaluate the area of ${\cal D}$: ${\rm{Area}}\left( {\cal D} \right) = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} {\rm{d}}x{\rm{d}}y = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_0}}^{} \left| {Jac\left( G \right)} \right|{\rm{d}}u{\rm{d}}v$ $ = ab\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_0}}^{} {\rm{d}}u{\rm{d}}v$ Since $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_0}}^{} {\rm{d}}u{\rm{d}}v$ gives the area of ${{\cal D}_0}$, a unit disk; we have $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_0}}^{} {\rm{d}}u{\rm{d}}v = \pi $ Thus, ${\rm{Area}}\left( {\cal D} \right) = \pi ab$. Hence, the area of the ellipse is $\pi ab$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.