Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.2 Double Integrals over More General Regions - Exercises - Page 860: 65

Answer

We prove that $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} 1{\rm{d}}A = \mathop \smallint \limits_a^b \left( {{g_1}\left( x \right) - {g_2}\left( x \right)} \right){\rm{d}}x$

Work Step by Step

Suppose that ${\cal D}$ is the region between two curves $y = {g_1}\left( x \right)$ and $y = {g_2}\left( x \right)$ with ${g_2}\left( x \right) \le {g_1}\left( x \right)$ for $a \le x \le b$. Then, ${\cal D}$ is a vertically simple region whose description is given by ${\cal D} = \left\{ {\left( {x,y} \right)|a \le x \le b,{g_2}\left( x \right) \le y \le {g_1}\left( x \right)} \right\}$ Using Eq. (3), we evaluate the area of the domain ${\cal D}$ as an iterated integral: $Area\left( {\cal D} \right) = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} 1{\rm{d}}A = \mathop \smallint \limits_{x = a}^b \left( {\mathop \smallint \limits_{y = {g_2}\left( x \right)}^{{g_1}\left( x \right)} {\rm{d}}y} \right){\rm{d}}x$ $ = \mathop \smallint \limits_{x = a}^b \left( {y|_{{g_2}\left( x \right)}^{{g_1}\left( x \right)}} \right){\rm{d}}x$ $ = \mathop \smallint \limits_{x = a}^b \left( {{g_1}\left( x \right) - {g_2}\left( x \right)} \right){\rm{d}}x$ Hence, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} 1{\rm{d}}A = \mathop \smallint \limits_a^b \left( {{g_1}\left( x \right) - {g_2}\left( x \right)} \right){\rm{d}}x$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.