Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.2 Double Integrals over More General Regions - Exercises - Page 860: 62

Answer

We choose the point $P = \left( {0.8622,0.5} \right) \in {\cal D}$ such that: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A = f\left( P \right)\cdot Area\left( {\cal D} \right)$ Thus, the Mean Value Theorem for Double Integrals is verified.

Work Step by Step

We have $f\left( {x,y} \right) = {{\rm{e}}^{x - y}}$ and the triangle bounded by $y=0$, $x=1$, and $y=x$. We can consider the triangle as a vertically simple region whose domain description is given by ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le x \le 1,0 \le y \le x} \right\}$ To verify the Mean Value Theorem for Double Integrals for $f\left( {x,y} \right)$, we first evaluate the double integral of $f\left( {x,y} \right)$ as an iterated integral over ${\cal D}$: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A = \mathop \smallint \limits_{x = 0}^1 \left( {\mathop \smallint \limits_{y = 0}^x {{\rm{e}}^{x - y}}{\rm{d}}y} \right){\rm{d}}x$ $ = - \mathop \smallint \limits_{x = 0}^1 \left( {{{\rm{e}}^{x - y}}|_0^x} \right){\rm{d}}x$ $ = - \mathop \smallint \limits_{x = 0}^1 \left( {1 - {{\rm{e}}^x}} \right){\rm{d}}x$ $ = - \left( {\left( {x - {{\rm{e}}^x}} \right)|_0^1} \right)$ $ = - \left( {1 - {\rm{e}} + 1} \right)$ $ = {\rm{e}} - 2$ Notice that the area of ${\cal D}$ is the area of a triangle with base $1$ and height $1$. So, $Area\left( {\cal D} \right) = \frac{1}{2}$. By Theorem 5, the Mean Value Theorem for Double Integrals, we have $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A = f\left( P \right)\cdot Area\left( {\cal D} \right)$, where $f\left( P \right) = \bar f$. Thus, ${\rm{e}} - 2 = \frac{1}{2}f\left( P \right)$ $f\left( P \right) = 2{\rm{e}} - 4$ Now, Theorem 5 guarantees that there exist a point $P = \left( {a,b} \right) \in {\cal D}$ such that $f\left( P \right) = {{\rm{e}}^{a - b}} = 2{\rm{e}} - 4$. Taking the logarithm on both sides, we get $a - b = \ln \left( {2{\rm{e}} - 4} \right)$ $a = \ln \left( {2{\rm{e}} - 4} \right) + b$ We choose $b = \frac{1}{2}$, so then $a = \ln \left( {2{\rm{e}} - 4} \right) + \frac{1}{2} \simeq 0.8622$. Since the point $P = \left( {0.8622,0.5} \right) \in {\cal D}$, the following is satisfied: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A = f\left( P \right)\cdot Area\left( {\cal D} \right)$ Thus, the Mean Value Theorem for Double Integrals is verified.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.