Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.2 Double Integrals over More General Regions - Exercises - Page 860: 57

Answer

Using Theorem 4, we prove that $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A \le \frac{3}{2}$.

Work Step by Step

We have $f\left( {x,y} \right) = \sqrt {{x^3} + 1} $ and the domain ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le x \le 2, - \frac{1}{8} \le y \le \frac{1}{8}} \right\}$. Notice that $f\left( {x,y} \right) \le 3$ for all $\left( {x,y} \right) \in {\cal D}$. By part (a) of Theorem 4, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A \le 3\cdot Area\left( {\cal D} \right)$ Since ${\cal D}$ is the rectangle $0 \le x \le 2$, $ - \frac{1}{8} \le y \le \frac{1}{8}$, the area of ${\cal D}$ is $Area\left( {\cal D} \right) = 2\cdot\frac{1}{4} = \frac{1}{2}$. Hence, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A \le \frac{3}{2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.