Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.2 Double Integrals over More General Regions - Exercises - Page 860: 58

Answer

(a) Using Theorem 4, we show that $\mathop \smallint \limits_0^1 \mathop \smallint \limits_0^1 \sin \left( {xy} \right){\rm{d}}x{\rm{d}}y \le \frac{1}{4}$ (b) Using a computer algebra system, we evaluate the double integral and the result is $\mathop \smallint \limits_0^1 \mathop \smallint \limits_0^1 \sin \left( {xy} \right){\rm{d}}x{\rm{d}}y \simeq 0.240$

Work Step by Step

(a) From the double integral $\mathop \smallint \limits_0^1 \mathop \smallint \limits_0^1 \sin \left( {xy} \right){\rm{d}}x{\rm{d}}y$, we see that the domain is a horizontally simple region whose description is given by ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le y \le 1,0 \le x \le 1} \right\}$ Using the inequality $0 \le \sin x \le x$ for $x \ge 0$, we have $0 \le \sin \left( {xy} \right) \le xy$, ${\ \ \ \ }$ for $x,y \ge 0$ By part (a) of Theorem 4, we obtain $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \sin \left( {xy} \right){\rm{d}}A \le \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} xy{\rm{d}}A$ Next, we evaluate $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} xy{\rm{d}}A$ as an iterated integral: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} xy{\rm{d}}A = \mathop \smallint \limits_{y = 0}^1 \left( {\mathop \smallint \limits_{x = 0}^1 xy{\rm{d}}x} \right){\rm{d}}y$ $ = \frac{1}{2}\mathop \smallint \limits_{y = 0}^1 \left( {{x^2}y|_0^1} \right){\rm{d}}y$ $ = \frac{1}{2}\mathop \smallint \limits_{y = 0}^1 y{\rm{d}}y$ $ = \frac{1}{4}\left( {{y^2}|_0^1} \right)$ $ = \frac{1}{4}$ Hence, $\mathop \smallint \limits_0^1 \mathop \smallint \limits_0^1 \sin \left( {xy} \right){\rm{d}}x{\rm{d}}y \le \frac{1}{4}$. (b) Using a computer algebra system, we evaluate the double integral and the result is $\mathop \smallint \limits_0^1 \mathop \smallint \limits_0^1 \sin \left( {xy} \right){\rm{d}}x{\rm{d}}y \simeq 0.240$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.