Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.2 Double Integrals over More General Regions - Exercises - Page 860: 64

Answer

The area of each subdomain is $Area\left( {{{\cal D}_j}} \right) = \frac{\pi }{{12}}$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A \approx 3.2201$

Work Step by Step

Using Figure 33, we list the values of $f\left( {{P_j}} \right)$ in the following table: $\begin{array}{*{20}{c}} j&1&2&3&4&5&6\\ {f\left( {{P_j}} \right)}&{2.5}&{2.4}&{2.2}&2&{1.7}&{1.5} \end{array}$ Since the radius of the circle is $5$, so the the length of a subdomain is $l = 5\cdot\Delta \theta = \frac{{5\pi }}{{12}}$. From Figure 33 we see that the width of a subdomain is $0.2$. So, the area of each subdomain is $Area\left( {{{\cal D}_j}} \right) = \frac{{5\pi }}{{12}}\cdot0.2 = \frac{\pi }{{12}}$. Using Eq. (11) and the values in the given table, we estimate $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A$: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A \approx \mathop \sum \limits_6^{j = 1} f\left( {{P_j}} \right)Area\left( {{{\cal D}_j}} \right)$ $ = \frac{\pi }{{12}}\left( {2.5 + 2.4 + 2.2 + 2 + 1.7 + 1.5} \right)$ $ = 3.2201$ Thus, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A \approx 3.2201$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.