Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.2 Double Integrals over More General Regions - Exercises - Page 860: 63

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A \approx 57.01$

Work Step by Step

Using Eq. (11) and the values in the given table, we estimate $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A$: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A \approx \mathop \sum \limits_{j = 1}^6 f\left( {{P_j}} \right)Area\left( {{{\cal D}_j}} \right)$ $ = 9\cdot1.2 + 9.1\cdot1.1 + 9.3\cdot1.4 + 9.1\cdot0.6 + 8.9\cdot1.2 + 8.8\cdot0.8$ $ = 57.01$ Thus, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A \approx 57.01$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.