Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.2 Double Integrals over More General Regions - Exercises - Page 860: 61

Answer

We choose the point $P = \left( {\frac{1}{3},2\sqrt 2 } \right) \in {\cal D}$ that satisfies $x{y^2} = \frac{8}{3}$, such that $f\left( P \right) = \bar f$.

Work Step by Step

We have $f\left( {x,y} \right) = x{y^2}$ on ${\cal D} = \left[ {0,1} \right] \times \left[ {0,4} \right]$. We can consider ${\cal D}$ as a vertically simple region whose description is given by ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le x \le 1,0 \le y \le 4} \right\}$ Next, we evaluate the double integral of $f\left( {x,y} \right)$ on ${\cal D}$ as an iterated integral: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A = \mathop \smallint \limits_{x = 0}^1 \left( {\mathop \smallint \limits_{y = 0}^4 x{y^2}} \right){\rm{d}}y{\rm{d}}x$ $ = \frac{1}{3}\mathop \smallint \limits_{x = 0}^1 x\left( {{y^3}|_0^4} \right){\rm{d}}x$ $ = \frac{{64}}{3}\mathop \smallint \limits_{x = 0}^1 x{\rm{d}}x$ $ = \frac{{32}}{3}\left( {{x^2}|_0^1} \right)$ $ = \frac{{32}}{3}$ Since the domain ${\cal D}$ is a rectangle: ${\cal D} = \left[ {0,1} \right] \times \left[ {0,4} \right]$, the area of ${\cal D}$ is $Area\left( {\cal D} \right) = 4$. By Theorem 5, the Mean Value Theorem for Double Integrals, we have $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A = f\left( P \right)\cdot Area\left( {\cal D} \right)$, where $f\left( P \right) = \bar f$. Therefore, $\frac{{32}}{3} = 4f\left( P \right)$. So, $f\left( P \right) = \bar f = \frac{8}{3}$. Thus, we obtain a curve $x{y^2} = \frac{8}{3}$ whose point $P \in {\cal D}$ is the point such that the average $f\left( P \right) = \bar f$ of $f\left( {x,y} \right) = x{y^2}$ on ${\cal D} = \left[ {0,1} \right] \times \left[ {0,4} \right]$. For example, we can choose the point $P = \left( {\frac{1}{3},2\sqrt 2 } \right) \in {\cal D}$ that satisfies $x{y^2} = \frac{8}{3}$, such that $f\left( P \right) = \bar f$. This is illustrated in the figure attached.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.