Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.2 Double Integrals over More General Regions - Exercises - Page 860: 59

Answer

Using Theorem 4, we prove that $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \frac{{{\rm{d}}A}}{{4 + {x^2} + {y^2}}} \le \pi $

Work Step by Step

We have the double integral $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \frac{{{\rm{d}}A}}{{4 + {x^2} + {y^2}}}$, where ${\cal D}$ is the disk ${x^2} + {y^2} \le 4$. Since ${x^2} \ge 0$ and ${y^2} \ge 0$, for all $\left( {x,y} \right) \in {\cal D}$, the following inequality holds: $4 \le 4 + {x^2} + {y^2} \le 8$ Taking reciprocals, we get $\frac{1}{8} \le \frac{1}{{4 + {x^2} + {y^2}}} \le \frac{1}{4}$ By part (b) of Theorem 4, $\frac{1}{8}\cdot Area\left( {\cal D} \right) \le \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \frac{{{\rm{d}}A}}{{4 + {x^2} + {y^2}}} \le \frac{1}{4}\cdot Area\left( {\cal D} \right)$ Since the domain ${\cal D}$ is a disk of radius $2$, its area is $\pi \cdot{2^2}$. So, $Area\left( {\cal D} \right) = 4\pi $. Hence, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \frac{{{\rm{d}}A}}{{4 + {x^2} + {y^2}}} \le \pi $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.