Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.8 Lagrange Multipliers: Optimizing with a Constraint - Exercises - Page 831: 9

Answer

The maximum value of $f\left( {x,y} \right)$ on the constraint is $\sqrt 2 $ and the minimum value is $1$.

Work Step by Step

We have $f\left( {x,y} \right) = {x^2} + {y^2}$ and the constraint $g\left( {x,y} \right) = {x^4} + {y^4} - 1 = 0$. Step 1. Write out the Lagrange equations Using Theorem 1, the Lagrange condition $\nabla f = \lambda \nabla g$ yields $\left( {2x,2y} \right) = \lambda \left( {4{x^3},4{y^3}} \right)$ (1) ${\ \ \ \ }$ $2x = 4\lambda {x^3}$, ${\ \ \ }$ $2y = 4\lambda {y^3}$ Step 2. Solve for $\lambda$ in terms of $x$ and $y$ Case 1: $x=0$, $y \ne 0$ The second equation of (1) gives $\lambda = \frac{1}{{2{y^2}}}$, ${\ \ \ }$ $y = \pm \frac{1}{{\sqrt {2\lambda } }}$ Substituting $x=0$ and $y = \pm \frac{1}{{\sqrt {2\lambda } }}$ in the constraint equation $g\left( {x,y} \right)$ gives $\frac{1}{{4{\lambda ^2}}} - 1 = 0$, ${\ \ \ }$ $\lambda = \frac{1}{2}$ To have real solutions, $\lambda$ must be positive. So, $y = \pm 1$. The critical points are $\left( {0,1} \right)$, $\left( {0, - 1} \right)$. Case 2: $x \ne 0$, $y=0$ The first equation of (1) gives $\lambda = \frac{1}{{2{x^2}}}$, ${\ \ \ }$ $x = \pm \frac{1}{{\sqrt {2\lambda } }}$ Substituting $x = \pm \frac{1}{{\sqrt {2\lambda } }}$ and $y=0$ in the constraint equation $g\left( {x,y} \right)$ gives $\frac{1}{{4{\lambda ^2}}} - 1 = 0$, ${\ \ \ }$ $\lambda = \frac{1}{2}$ To have real solutions, $\lambda$ must be positive. So, $x = \pm 1$. The critical points are $\left( {1,0} \right)$, $\left( { - 1,0} \right)$. Case 3: $x \ne 0$ and $y \ne 0$ From Step 1, we obtain $\lambda = \frac{1}{{2{x^2}}} = \frac{1}{{2{y^2}}}$. So $\lambda \ne 0$. Step 3. Solve for $x$ and $y$ using the constraint From Step 2, we obtain $y = \pm x$. Substituting it in the constraint $g\left( {x,y} \right)$ gives ${x^4} + {x^4} - 1 = 0$ $x = \pm \frac{1}{{{2^{1/4}}}}$ Thus, the critical points are $\left( {\frac{1}{{{2^{1/4}}}},\frac{1}{{{2^{1/4}}}}} \right)$, $\left( {\frac{1}{{{2^{1/4}}}}, - \frac{1}{{{2^{1/4}}}}} \right)$, $\left( { - \frac{1}{{{2^{1/4}}}},\frac{1}{{{2^{1/4}}}}} \right)$, $\left( { - \frac{1}{{{2^{1/4}}}}, - \frac{1}{{{2^{1/4}}}}} \right)$. Step 4. Calculate the critical values We evaluate $f$ at the critical points and list them in the following table: $\begin{array}{*{20}{c}} {{\rm{Critical{\ }point}}}&{f\left( {x,y} \right)}\\ {\left( {0,1} \right)}&1\\ {\left( {0, - 1} \right)}&1\\ {\left( {1,0} \right)}&1\\ {\left( { - 1,0} \right)}&1\\ {\left( {\frac{1}{{{2^{1/4}}}},\frac{1}{{{2^{1/4}}}}} \right)}&{\sqrt 2 }\\ {\left( {\frac{1}{{{2^{1/4}}}}, - \frac{1}{{{2^{1/4}}}}} \right)}&{\sqrt 2 }\\ {\left( { - \frac{1}{{{2^{1/4}}}},\frac{1}{{{2^{1/4}}}}} \right)}&{\sqrt 2 }\\ {\left( { - \frac{1}{{{2^{1/4}}}}, - \frac{1}{{{2^{1/4}}}}} \right)}&{\sqrt 2 } \end{array}$ From this table we conclude that the maximum value of $f\left( {x,y} \right)$ on the constraint is $\sqrt 2 $ and the minimum value is $1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.