Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.8 Lagrange Multipliers: Optimizing with a Constraint - Exercises - Page 831: 19

Answer

(a) the ratio $\frac{h}{r} = \sqrt 2 $ gives $V = \frac{{\sqrt 2 }}{3}\pi {r^3}$ a maximum value subject to the given surface area. (b) the ratio $\frac{h}{r} = \sqrt 2 $ gives $S = \sqrt 3 \pi {r^2}$ a minimum value subject to the given volume. (c) a cone with given volume and maximum surface area does not exist.

Work Step by Step

For a right-circular cone of radius $r$ and height $h$ we have - the surface area: $S = \pi r\sqrt {{r^2} + {h^2}} $ - the volume: $V = \frac{1}{3}\pi {r^2}h$ (a) In this case we have the volume $V\left( {r,h} \right) = \frac{1}{3}\pi {r^2}h$ subject to the constraint ${S_0} = \pi r\sqrt {{r^2} + {h^2}} $, where ${S_0}$ is a given constant. Write the constraint equation: $g\left( {r,h} \right) = \pi r\sqrt {{r^2} + {h^2}} - {S_0} = 0$. Using Theorem 1, the Lagrange condition $\nabla V = \lambda \nabla g$ yields $\left( {\frac{2}{3}\pi rh,\frac{1}{3}\pi {r^2}} \right) = \lambda \left( {\pi \sqrt {{r^2} + {h^2}} + \frac{{\pi {r^2}}}{{\sqrt {{r^2} + {h^2}} }},\frac{{\pi rh}}{{\sqrt {{r^2} + {h^2}} }}} \right)$ $\left( {\frac{2}{3}\pi rh,\frac{1}{3}\pi {r^2}} \right) = \lambda \left( {\frac{{\pi \left( {2{r^2} + {h^2}} \right)}}{{\sqrt {{r^2} + {h^2}} }},\frac{{\pi rh}}{{\sqrt {{r^2} + {h^2}} }}} \right)$ So, the Lagrange equations are $\frac{2}{3}rh = \lambda \frac{{2{r^2} + {h^2}}}{{\sqrt {{r^2} + {h^2}} }}$ $\frac{1}{3}{r^2} = \lambda \frac{{rh}}{{\sqrt {{r^2} + {h^2}} }}$ We may assume that $r \ne 0$ and $h \ne 0$, so $\lambda = \frac{{2rh\sqrt {{r^2} + {h^2}} }}{{3\left( {2{r^2} + {h^2}} \right)}} = \frac{{{r^2}\sqrt {{r^2} + {h^2}} }}{{3rh}}$ This equation can be simplified to $\frac{{2rh}}{{2{r^2} + {h^2}}} = \frac{r}{h}$: $2r{h^2} = r\left( {2{r^2} + {h^2}} \right)$ $2{h^2} = 2{r^2} + {h^2}$ ${h^2} = 2{r^2}$ $h = \sqrt 2 r$ Thus, the critical point occurs when $\frac{h}{r} = \sqrt 2 $. Using $h = \sqrt 2 r$, the extreme value of $V$ subject to the constraint ${S_0} = \pi r\sqrt {{r^2} + {h^2}} $ is $V = \frac{1}{3}\pi {r^2}\left( {\sqrt 2 r} \right) = \frac{{\sqrt 2 }}{3}\pi {r^3}$ Since $h>0$, for a given ${S_0}$ we cannot increase $r$ without violating the constraint. Hence, we conclude that the ratio $\frac{h}{r} = \sqrt 2 $ gives $V = \frac{{\sqrt 2 }}{3}\pi {r^3}$ a maximum value subject to the constraint ${S_0}$. (b) In this case we have the surface area $S\left( {r,h} \right) = \pi r\sqrt {{r^2} + {h^2}} $ subject to the constraint ${V_0} = \frac{1}{3}\pi {r^2}h$, where ${V_0}$ is a given constant. Write the constraint equation: $g\left( {r,h} \right) = \frac{1}{3}\pi {r^2}h - {V_0} = 0$. Using Theorem 1, the Lagrange condition $\nabla S = \lambda \nabla g$ yields $\left( {\pi \sqrt {{r^2} + {h^2}} + \frac{{\pi {r^2}}}{{\sqrt {{r^2} + {h^2}} }},\frac{{\pi rh}}{{\sqrt {{r^2} + {h^2}} }}} \right) = \lambda \left( {\frac{2}{3}\pi rh,\frac{1}{3}\pi {r^2}} \right)$ $\left( {\frac{{2{r^2} + {h^2}}}{{\sqrt {{r^2} + {h^2}} }},\frac{{rh}}{{\sqrt {{r^2} + {h^2}} }}} \right) = \lambda \left( {\frac{2}{3}rh,\frac{1}{3}{r^2}} \right)$ So, the Lagrange equations are $\frac{{2{r^2} + {h^2}}}{{\sqrt {{r^2} + {h^2}} }} = \lambda \left( {\frac{2}{3}rh} \right)$ $\frac{{rh}}{{\sqrt {{r^2} + {h^2}} }} = \lambda \left( {\frac{1}{3}{r^2}} \right)$ We may assume that $r \ne 0$ and $h \ne 0$, so $\lambda = 3\frac{{2{r^2} + {h^2}}}{{2rh\sqrt {{r^2} + {h^2}} }} = 3\frac{h}{{r\sqrt {{r^2} + {h^2}} }}$ This equation can be simplified to $\frac{{2{r^2} + {h^2}}}{{2h}} = h$. $2{r^2} + {h^2} = 2{h^2}$ ${h^2} = 2{r^2}$ $h = \sqrt 2 r$ Thus, the critical point occurs when $\frac{h}{r} = \sqrt 2 $. Using $h = \sqrt 2 r$ we obtain the extreme value of $S$ subject to the constraint ${V_0} = \frac{1}{3}\pi {r^2}h$: $S = \pi r\sqrt {{r^2} + 2{r^2}} = \sqrt 3 \pi {r^2}$ For a given ${V_0}$ we may increase $r$ and at the same time decrease $h$ such that ${V_0}$ is constant. Hence, we conclude that the ratio $\frac{h}{r} = \sqrt 2 $ gives $S = \sqrt 3 \pi {r^2}$ a minimum value subject to the constraint ${V_0}$. (c) In part (b) we obtain the minimum value of $S$ on the constraint ${V_0} = \frac{1}{3}\pi {r^2}h$: $S = \sqrt 3 \pi {r^2}$ As we increase $r$ and at the same time decrease $h$, we can keep ${V_0}$ constant. However, as $r$ increases, $S$ increases. Hence, we conclude that there is no maximum value of $S$ on the constraint. Hence, a cone with given volume ${V_0}$ and maximum surface area does not exist.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.