Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.8 Lagrange Multipliers: Optimizing with a Constraint - Exercises - Page 831: 7

Answer

The maximum value of $f\left( {x,y} \right)$ on the constraint is $\frac{8}{3}$ and the minimum value is $ - \frac{8}{3}$.

Work Step by Step

We have $f\left( {x,y} \right) = xy$ and the constraint $g\left( {x,y} \right) = 4{x^2} + 9{y^2} - 32 = 0$. Step 1. Write out the Lagrange equations Using Theorem 1, the Lagrange condition $\nabla f = \lambda \nabla g$ yields $\left( {y,x} \right) = \lambda \left( {8x,18y} \right)$ $y = 8\lambda x$, ${\ \ \ \ }$ $x = 18\lambda y$ Step 2. Solve for $\lambda$ in terms of $x$ and $y$ Since $\left( {0,0} \right)$ does not satisfy the constraint, we may assume that $x \ne 0$ and $y \ne 0$. From Step 1, we obtain $\lambda = \frac{y}{{8x}} = \frac{x}{{18y}}$. So $\lambda \ne 0$. Step 3. Solve for $x$ and $y$ using the constraint From Step 2, we obtain ${y^2} = \frac{4}{9}{x^2}$. So, $y = \pm \frac{2}{3}x$. Substituting it in the constraint $g\left( {x,y} \right)$ gives $4{x^2} + 9\left( {\frac{4}{9}{x^2}} \right) - 32 = 0$ So, $x = \pm 2$. Thus, the critical points are $\left( {2,\frac{4}{3}} \right)$, $\left( {2, - \frac{4}{3}} \right)$, $\left( { - 2,\frac{4}{3}} \right)$, $\left( { - 2, - \frac{4}{3}} \right)$. Step 4. Calculate the critical values We evaluate $f$ at the critical points and list them in the following table: $\begin{array}{*{20}{c}} {{\rm{Critical{\ }point}}}&{f\left( {x,y} \right)}\\ {\left( {2,\frac{4}{3}} \right)}&{\frac{8}{3}}\\ {\left( {2, - \frac{4}{3}} \right)}&{ - \frac{8}{3}}\\ {\left( { - 2,\frac{4}{3}} \right)}&{ - \frac{8}{3}}\\ {\left( { - 2, - \frac{4}{3}} \right)}&{\frac{8}{3}} \end{array}$ From this table we conclude that the maximum value of $f\left( {x,y} \right)$ on the constraint is $\frac{8}{3}$ and the minimum value is $ - \frac{8}{3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.