Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.8 Lagrange Multipliers: Optimizing with a Constraint - Exercises - Page 831: 3

Answer

The maximum value of $f\left( {x,y} \right)$ on the constraint is $4\sqrt 2 $ and the minimum value is $ - 4\sqrt 2 $.

Work Step by Step

We have $f\left( {x,y} \right) = \left( {{x^2} + 1} \right)y$ and the constraint ${x^2} + {y^2} = 5$. So, $g\left( {x,y} \right) = {x^2} + {y^2} - 5 = 0$. Step 1. Write out the Lagrange equations Using Theorem 1, the Lagrange condition $\nabla f = \lambda \nabla g$ yields $\left( {2xy,{x^2} + 1} \right) = \lambda \left( {2x,2y} \right)$ $2xy = 2\lambda x$, ${\ \ \ }$ ${x^2} + 1 = 2\lambda y$ Step 2. Solve for $\lambda$ in terms of $x$ and $y$ From Step 1, we obtain (1) ${\ \ \ \ }$ $2x\left( {y - \lambda } \right) = 0$, ${\ \ \ }$ ${x^2} + 1 = 2\lambda y$ Since the left-hand side of the second equation satisfies ${x^2} + 1 \ge 1$, therefore, $y \ne 0$ and $\lambda \ne 0$. Step 3. Solve for $x$ and $y$ using the constraint Case 1. $x=0$ The second equation of (1) gives $y = \frac{1}{{2\lambda }}$. Substituting $x=0$ and $y = \frac{1}{{2\lambda }}$ in $g\left( {x,y} \right) = {x^2} + {y^2} - 5 = 0$ gives $\frac{1}{{4{\lambda ^2}}} - 5 = 0$ $\lambda = \pm \frac{1}{{2\sqrt 5 }}$ So, $y = \pm \sqrt 5 $. The critical points are $\left( {0,\sqrt 5 } \right)$ and $\left( {0, - \sqrt 5 } \right)$. Case 2. $x \ne 0$ The first equation of (1) gives $y=\lambda$. Substituting it in the second equation of (1) gives ${x^2} + 1 = 2{\lambda ^2}$ ${x^2} = 2{\lambda ^2} - 1$ Substituting $y=\lambda$ and ${x^2} = 2{\lambda ^2} - 1$ in $g\left( {x,y} \right) = {x^2} + {y^2} - 5 = 0$ gives $2{\lambda ^2} - 1 + {\lambda ^2} - 5 = 0$ $3{\lambda ^2} - 6 = 0$ The solutions are $\lambda = \pm \sqrt 2 $. So $x = \pm \sqrt 3 $ and $y = \pm \sqrt 2 $. The critical points are $\left( {\sqrt 3 ,\sqrt 2 } \right)$, $\left( {\sqrt 3 , - \sqrt 2 } \right)$, $\left( { - \sqrt 3 ,\sqrt 2 } \right)$, $\left( { - \sqrt 3 , - \sqrt 2 } \right)$. Step 4. Calculate the critical values We evaluate $f$ at the critical points and list them in the following table: $\begin{array}{*{20}{c}} {{\rm{Critical{\ }points}}}&{f\left( {x,y} \right)}\\ {\left( {0,\sqrt 5 } \right)}&{\sqrt 5 }\\ {\left( {0, - \sqrt 5 } \right)}&{ - \sqrt 5 }\\ {\left( {\sqrt 3 ,\sqrt 2 } \right)}&{4\sqrt 2 }\\ {\left( {\sqrt 3 , - \sqrt 2 } \right)}&{ - 4\sqrt 2 }\\ {\left( { - \sqrt 3 ,\sqrt 2 } \right)}&{4\sqrt 2 }\\ {\left( { - \sqrt 3 , - \sqrt 2 } \right)}&{ - 4\sqrt 2 } \end{array}$ From this table we conclude that the maximum value of $f\left( {x,y} \right)$ on the constraint is $4\sqrt 2 $ and the minimum value is $ - 4\sqrt 2 $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.