Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.8 Lagrange Multipliers: Optimizing with a Constraint - Exercises - Page 831: 15

Answer

The maximum value of $f\left( {x,y,z} \right)$ on the constraint is $2\sqrt 2 $ and the minimum value is $ - 2\sqrt 2 $.

Work Step by Step

We have $f\left( {x,y,z} \right) = xy + xz$ and the constraint $g\left( {x,y,z} \right) = {x^2} + {y^2} + {z^2} - 4 = 0$. Step 1. Write out the Lagrange equations Using Theorem 1, the Lagrange condition $\nabla f = \lambda \nabla g$ yields $\left( {y + z,x,x} \right) = \lambda \left( {2x,2y,2z} \right)$ (1) ${\ \ \ \ }$ $y + z = 2\lambda x$, ${\ \ }$ $x = 2\lambda y$, ${\ \ }$ $x = 2\lambda z$ Step 2. Solve for $\lambda$ in terms of $x$ and $y$ Case 1: $x=0$ The first equation of (1) gives $y+z=0$. So, $z=-y$. The constraint $g\left( {x,y,z} \right)$ becomes ${y^2} + {y^2} - 4 = 0$ $2{y^2} = 4$ $y = \pm \sqrt 2 $ So, $z = \mp \sqrt 2 $. The second and the third equation of (1) imply that in this case $\lambda=0$. So, the critical points are $\left( {0,\sqrt 2 , - \sqrt 2 } \right)$, $\left( {0, - \sqrt 2 ,\sqrt 2 } \right)$. Case 2: $y=0$ The second equation of (1) gives $x=0$. As a result, the first equation of (1) gives $z=0$. Since $\left( {0,0,0} \right)$ does not satisfy the constraint, there is no critical point in this case. Case 3: $z=0$ The third equation of (1) gives $x=0$. As a result, the first equation of (1) gives $y=0$. Similar to case 2 above, since $\left( {0,0,0} \right)$ does not satisfy the constraint, there is no critical point in this case. Case 4: $x \ne 0$, $y \ne 0$, $z \ne 0$ From equation (1) we obtain $\lambda = \frac{{y + z}}{{2x}} = \frac{x}{{2y}} = \frac{x}{{2z}}$. We have $\frac{x}{{2y}} = \frac{x}{{2z}}$. So, $z=y$. We have $\frac{{y + z}}{{2x}} = \frac{x}{{2y}}$. Using $z=y$, we get $\frac{{2y}}{{2x}} = \frac{x}{{2y}}$. ${y^2} = \frac{1}{2}{x^2}$ $y = \pm \frac{1}{{\sqrt 2 }}x$ Step 3. Solve for $x$ and $y$ using the constraint From Step 2, we obtain $y = \pm \frac{1}{{\sqrt 2 }}x$ and $z=y$. Substituting these in the constraint $g\left( {x,y,z} \right)$ gives ${x^2} + {y^2} + {z^2} - 4 = 0$ ${x^2} + \frac{1}{2}{x^2} + \frac{1}{2}{x^2} - 4 = 0$ $2{x^2} = 4$ $x = \pm \sqrt 2 $ So, the critical points are $\left( {\sqrt 2 ,1,1} \right)$, $\left( {\sqrt 2 , - 1, - 1} \right)$, $\left( { - \sqrt 2 ,1,1} \right)$, $\left( { - \sqrt 2 , - 1, - 1} \right)$. Step 4. Calculate the critical values We evaluate $f$ at the critical points and list them in the following table: $\begin{array}{*{20}{c}} {{\rm{Critical{\ }points}}}&{f\left( {x,y,z} \right)}\\ {\left( {0,\sqrt 2 , - \sqrt 2 } \right)}&0\\ {\left( {0, - \sqrt 2 ,\sqrt 2 } \right)}&0\\ {\left( {\sqrt 2 ,1,1} \right)}&{2\sqrt 2 }\\ {\left( {\sqrt 2 , - 1, - 1} \right)}&{ - 2\sqrt 2 }\\ {\left( { - \sqrt 2 ,1,1} \right)}&{ - 2\sqrt 2 }\\ {\left( { - \sqrt 2 , - 1, - 1} \right)}&{2\sqrt 2 } \end{array}$ From this table we conclude that the maximum value of $f\left( {x,y,z} \right)$ on the constraint is $2\sqrt 2 $ and the minimum value is $ - 2\sqrt 2 $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.