Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.8 Lagrange Multipliers: Optimizing with a Constraint - Exercises - Page 831: 10

Answer

The maximum value of $f\left( {x,y} \right)$ on the constraint is $8$ and the minimum value is $0$.

Work Step by Step

We have $f\left( {x,y} \right) = {x^2}{y^4}$ and the constraint $g\left( {x,y} \right) = {x^2} + 2{y^2} - 6 = 0$. Step 1. Write out the Lagrange equations Using Theorem 1, the Lagrange condition $\nabla f = \lambda \nabla g$ yields $\left( {2x{y^4},4{x^2}{y^3}} \right) = \lambda \left( {2x,4y} \right)$ (1) ${\ \ \ \ }$ $2x{y^4} = 2\lambda x$, ${\ \ \ }$ $4{x^2}{y^3} = 4\lambda y$ Step 2. Solve for $\lambda$ in terms of $x$ and $y$ Case 1: $x=0$, $y \ne 0$ Since $x=0$, the second equation of (1) implies that $\lambda=0$. Substituting $x=0$ in the constraint $g\left( {x,y} \right)$ gives $2{y^2} - 6 = 0$. $y = \pm \sqrt 3 $ The critical points are $\left( {0,\sqrt 3 } \right)$ and $\left( {0, - \sqrt 3 } \right)$. Case 2: $x \ne 0$, $y=0$ Since $y=0$, the first equation of (1) implies that $\lambda=0$. Substituting $y=0$ in the constraint equation $g\left( {x,y} \right)$ gives ${x^2} - 6 = 0$. $x = \pm \sqrt 6 $ The critical points are $\left( {\sqrt 6 ,0} \right)$ and $\left( { - \sqrt 6 ,0} \right)$. Case 3: $x \ne 0$ and $y \ne 0$ From Step 1, we obtain $\lambda = {y^4} = {x^2}{y^2}$. So, $\lambda \ne 0$. Step 3. Solve for $x$ and $y$ using the constraint From Step 2, we obtain ${y^2} = {x^2}$. So, $y = \pm x$. Substituting it in the constraint $g\left( {x,y} \right)$ gives ${x^2} + 2{x^2} - 6 = 0$, ${\ \ \ }$ $3{x^2} - 6 = 0$ So, $x = \pm \sqrt 2 $. Thus, the critical points are $\left( {\sqrt 2 ,\sqrt 2 } \right)$, $\left( {\sqrt 2 , - \sqrt 2 } \right)$, $\left( { - \sqrt 2 ,\sqrt 2 } \right)$, $\left( { - \sqrt 2 , - \sqrt 2 } \right)$. Step 4. Calculate the critical values We evaluate $f$ at the critical points and list them in the following table: $\begin{array}{*{20}{c}} {{\rm{Critical{\ }point}}}&{f\left( {x,y} \right)}\\ {\left( {0,\sqrt 3 } \right)}&0\\ {\left( {0, - \sqrt 3 } \right)}&0\\ {\left( {\sqrt 6 ,0} \right)}&0\\ {\left( { - \sqrt 6 ,0} \right)}&0\\ {\left( {\sqrt 2 ,\sqrt 2 } \right)}&8\\ {\left( {\sqrt 2 , - \sqrt 2 } \right)}&8\\ {\left( { - \sqrt 2 ,\sqrt 2 } \right)}&8\\ {\left( { - \sqrt 2 , - \sqrt 2 } \right)}&8 \end{array}$ From this table we conclude that the maximum value of $f\left( {x,y} \right)$ on the constraint is $8$ and the minimum value is $0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.