Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.8 Lagrange Multipliers: Optimizing with a Constraint - Exercises - Page 831: 17

Answer

The point $\left( {a,b} \right)$ on the graph of $y = {{\rm{e}}^x}$ where the value $a b$ is as small as possible occurs at the point $\left( { - 1,{{\rm{e}}^{ - 1}}} \right)$.

Work Step by Step

We have $y = {{\rm{e}}^x}$. Let $f\left( {x,y} \right) = xy$. Our task is to find two numbers $a$ and $b$ such that $f\left( {a,b} \right) = ab$ is the minimum value subject to the constraint $g\left( {x,y} \right) = {{\rm{e}}^x} - y = 0$. Using Theorem 1, the Lagrange condition $\nabla f = \lambda \nabla g$ yields $\left( {y,x} \right) = \lambda \left( {{{\rm{e}}^x}, - 1} \right)$ $y = {{\rm{e}}^x}\lambda $, ${\ \ \ }$ $x=-1$ So, $y = {{\rm{e}}^{ - 1}}\lambda $. Substituting $x=-1$ and $y = {{\rm{e}}^{ - 1}}\lambda $ in the constraint gives ${{\rm{e}}^{ - 1}} - {{\rm{e}}^{ - 1}}\lambda = 0$ So, $\lambda = 1$. Using $x=-1$, $\lambda = 1$ and $y = {{\rm{e}}^{ - 1}}\lambda $, we obtain the critical point at $\left( { - 1,{{\rm{e}}^{ - 1}}} \right)$. Thus, the critical value is $f\left( { - 1,{{\rm{e}}^{ - 1}}} \right) = - {{\rm{e}}^{ - 1}}$. Next, we verify that $f\left( { - 1,{{\rm{e}}^{ - 1}}} \right) = - {{\rm{e}}^{ - 1}}$ is a minimum: Substituting $y = {{\rm{e}}^x}$ in $f$ gives a function of single variable $h\left( x \right) = f\left( {x,{{\rm{e}}^x}} \right) = x{{\rm{e}}^x}$. The derivatives of $h$ are $h'\left( x \right) = {{\rm{e}}^x} + x{{\rm{e}}^x}$ $h{\rm{''}}\left( x \right) = {{\rm{e}}^x} + {{\rm{e}}^x} + x{{\rm{e}}^x} = \left( {2 + x} \right){{\rm{e}}^x}$ At the critical point $x=-1$, we have $h{\rm{''}}\left( { - 1} \right) = {{\rm{e}}^{ - 1}} > 0$. Since $h{\rm{''}}\left( { - 1} \right) > 0$, we conclude that $f\left( { - 1,{{\rm{e}}^{ - 1}}} \right) = - {{\rm{e}}^{ - 1}}$ is a minimum. Hence, the point $\left( {a,b} \right)$ on the graph of $y = {{\rm{e}}^x}$ where the value $a b$ is as small as possible occurs at the point $\left( { - 1,{{\rm{e}}^{ - 1}}} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.