Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.8 Lagrange Multipliers: Optimizing with a Constraint - Exercises - Page 831: 8

Answer

The maximum value of $f\left( {x,y} \right)$ on the constraint is $4\sqrt 5 $ and the minimum value is $ - 4\sqrt 5 $.

Work Step by Step

We have $f\left( {x,y} \right) = {x^2}y + x + y$ and the constraint $g\left( {x,y} \right) = xy - 4 = 0$. Step 1. Write out the Lagrange equations Using Theorem 1, the Lagrange condition $\nabla f = \lambda \nabla g$ yields $\left( {2xy + 1,{x^2} + 1} \right) = \lambda \left( {y,x} \right)$ (1) ${\ \ \ }$ $2xy + 1 = \lambda y$, ${\ \ }$ ${x^2} + 1 = \lambda x$ Step 2. Solve for $\lambda$ in terms of $x$ and $y$ Since ${x^2} + 1 \ge 1$, so the second equation of (1) implies that $\lambda \ne 0$ and $x \ne 0$. As a result, the first equation of (1) implies that $y \ne 0$. From Step 1, for $x \ne 0$ and $y \ne 0$ we obtain $\lambda = \frac{{2xy + 1}}{y} = \frac{{{x^2} + 1}}{x}$. Step 3. Solve for $x$ and $y$ using the constraint From Step 2, we obtain $x\left( {2xy + 1} \right) = y\left( {{x^2} + 1} \right)$. So, $2{x^2}y + x = {x^2}y + y$ ${x^2}y - y + x = 0$ $y\left( {{x^2} - 1} \right) + x = 0$ $y = \frac{x}{{1 - {x^2}}}$ Substituting it in the constraint $g\left( {x,y} \right)$ gives $\frac{{{x^2}}}{{1 - {x^2}}} - 4 = 0$ ${x^2} - 4\left( {1 - {x^2}} \right) = 0$ $5{x^2} = 4$ So, $x = \pm \frac{2}{{\sqrt 5 }}$. Using $y = \frac{x}{{1 - {x^2}}}$ we obtain the critical points: $\left( {\frac{2}{{\sqrt 5 }},2\sqrt 5 } \right)$ and $\left( { - \frac{2}{{\sqrt 5 }}, - 2\sqrt 5 } \right)$. Step 4. Calculate the critical values We evaluate $f$ at the critical points and list them in the following table: $\begin{array}{*{20}{c}} {{\rm{Critical{\ }point}}}&{f\left( {x,y} \right)}\\ {\left( {\frac{2}{{\sqrt 5 }},2\sqrt 5 } \right)}&{4\sqrt 5 }\\ {\left( { - \frac{2}{{\sqrt 5 }}, - 2\sqrt 5 } \right)}&{ - 4\sqrt 5 } \end{array}$ From this table we conclude that the maximum value of $f\left( {x,y} \right)$ on the constraint is $4\sqrt 5 $ and the minimum value is $ - 4\sqrt 5 $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.