Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.4 Curvature - Exercises - Page 736: 66

Answer

At $t=0$, the osculating circle can be parametrized by ${\bf{o}}\left( t \right) = \left( {3 - 2\cos \theta ,\sqrt 2 \sin \theta ,\sqrt 2 \sin \theta } \right)$

Work Step by Step

Step 1. Find the radius of the osculating circle We have ${\bf{r}}\left( t \right) = \left( {\cosh t,\sinh t,t} \right)$. The derivatives are ${\bf{r}}'\left( t \right) = \left( {\sinh t,\cosh t,1} \right)$ and ${\bf{r}}{\rm{''}}\left( t \right) = \left( {\cosh t,\sinh t,0} \right)$. Evaluate $||{\bf{r}}'\left( 0 \right) \times {\bf{r}}{\rm{''}}\left( 0 \right)||$ ${\bf{r}}'\left( 0 \right) \times {\bf{r}}{\rm{''}}\left( 0 \right) = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ 0&1&1\\ 1&0&0 \end{array}} \right|$ ${\bf{r}}'\left( 0 \right) \times {\bf{r}}{\rm{''}}\left( 0 \right) = {\bf{j}} - {\bf{k}}$ $||{\bf{r}}'\left( 0 \right) \times {\bf{r}}{\rm{''}}\left( 0 \right)|| = \sqrt 2 $ We compute the curvature by using Eq. (3) of Theorem 1: $\kappa \left( t \right) = \frac{{||{\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right)||}}{{||{\bf{r}}'\left( t \right)|{|^3}}}$ At $t=0$, we get $\kappa \left( 0 \right) = \frac{{||{\bf{r}}'\left( 0 \right) \times {\bf{r}}{\rm{''}}\left( 0 \right)||}}{{||{\bf{r}}'\left( 0 \right)|{|^3}}}$ $\kappa \left( 0 \right) = \frac{{\sqrt 2 }}{{{{\left( {\sqrt 2 } \right)}^3}}} = \frac{1}{2}$ Since $R = \frac{1}{\kappa }$, so the osculating circle has radius $2$. Step 2. Find the normal vector The unit tangent vector is ${\bf{T}}\left( t \right) = \frac{{{\bf{r}}'\left( t \right)}}{{||{\bf{r}}'\left( t \right)||}}$ ${\bf{T}}\left( t \right) = \frac{{\left( {\sinh t,\cosh t,1} \right)}}{{\sqrt {\left( {\sinh t,\cosh t,1} \right)\cdot\left( {\sinh t,\cosh t,1} \right)} }}$ ${\bf{T}}\left( t \right) = \frac{1}{{\sqrt {{{\sinh }^2}t + {{\cosh }^2}t + 1} }}\left( {\sinh t,\cosh t,1} \right)$ Since ${\cosh ^2}t - {\sinh ^2}t = 1$, so ${\bf{T}}\left( t \right) = \frac{1}{{\sqrt {2{{\cosh }^2}t} }}\left( {\sinh t,\cosh t,1} \right) = \frac{1}{{\sqrt 2 }}\left( {\tanh t,1,secht} \right)$ The derivative of ${\bf{T}}\left( t \right)$ is ${\bf{T}}'\left( t \right) = \frac{1}{{\sqrt 2 }}\left( {sec{h^2}t,0, - secht\tanh t} \right)$ So, $||{\bf{T}}'\left( t \right)|{|^2} = \frac{1}{2}\left( {sec{h^4}t + sec{h^2}t{{\tanh }^2}t} \right)$ $||{\bf{T}}'\left( t \right)|{|^2} = \frac{1}{2}sec{h^2}t\left( {sec{h^2}t + {{\tanh }^2}t} \right)$ Since $sec{h^2}t + {\tanh ^2}t = 1$, so $||{\bf{T}}'\left( t \right)|{|^2} = \frac{1}{2}sec{h^2}t$ $||{\bf{T}}'\left( t \right)|| = \frac{1}{{\sqrt 2 }}secht$ The normal vector at $t$ is ${\bf{N}}\left( t \right) = \frac{{{\bf{T}}'\left( t \right)}}{{||{\bf{T}}'\left( t \right)||}}$ At $t=0$, we get ${\bf{N}}\left( 0 \right) = \frac{{\frac{1}{{\sqrt 2 }}\left( {1,0,0} \right)}}{{\sqrt {\frac{1}{2}\left( {1,0,0} \right)\cdot\left( {1,0,0} \right)} }} = \left( {1,0,0} \right)$ Step 3. Find the the center of the osculating circle By Eq. (9), the center of the osculating circle is given by $\overrightarrow {OQ} = {\bf{r}}\left( {{t_0}} \right) + \frac{1}{{{\kappa _P}}}{\bf{N}}$ At $t=0$, the center of curvature is $\overrightarrow {OQ} = {\bf{r}}\left( 0 \right) + \frac{1}{{\kappa \left( 0 \right)}}{\bf{N}}\left( 0 \right)$ $\overrightarrow {OQ} = \left( {1,0,0} \right) + 2\left( {1,0,0} \right) = \left( {3,0,0} \right)$ Step 4. Parametrize the osculating circle Since the osculating plane is spanned by ${\bf{T}}\left( t \right)$ and ${\bf{N}}\left( t \right)$, the osculating circle of radius $R$ can be parametrized by ${\bf{o}}\left( \theta \right) = \overrightarrow {OQ} + R\cos \theta \left( { - {\bf{N}}\left( t \right)} \right) + R\sin \theta \left( {{\bf{T}}\left( t \right)} \right)$, for $0 \le \theta \le 2\pi $, where $\overrightarrow {OQ} $ is the center of the osculating circle and ${\bf{N}}$ is the normal vector that points toward the center of the circle. At $t=0$, the osculating circle has radius $R=2$ and center $\left( {3,0,0} \right)$. So, it can be parametrized by ${\bf{o}}\left( t \right) = \left( {3,0,0} \right) - 2\cos \theta {\bf{N}}\left( 0 \right) + 2\sin \theta {\bf{T}}\left( 0 \right)$ ${\bf{o}}\left( t \right) = \left( {3,0,0} \right) - 2\cos \theta \left( {1,0,0} \right) + \frac{2}{{\sqrt 2 }}\sin \theta \left( {0,1,1} \right)$ ${\bf{o}}\left( t \right) = \left( {3 - 2\cos \theta ,\sqrt 2 \sin \theta ,\sqrt 2 \sin \theta } \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.