Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.4 Curvature - Exercises - Page 736: 54

Answer

(a) $\begin{array}{*{20}{c}} {{\bf{T}}\left( 0 \right) = \left( {0,1,0} \right)}\\ {{\bf{N}}\left( 0 \right) = \left( { - \frac{1}{{\sqrt 2 }},0, - \frac{1}{{\sqrt 2 }}} \right)}\\ {{\bf{B}}\left( 0 \right) = \left( { - \frac{1}{{\sqrt 2 }},0,\frac{1}{{\sqrt 2 }}} \right)} \end{array}$ (b) the equation of the osculating plane at the point $\left( {1,0,0} \right)$: $ - x + z = - 1$

Work Step by Step

(a) We have ${\bf{r}}\left( t \right) = \left( {\cos t,\sin t,\ln \left( {\cos t} \right)} \right)$. The tangent vector is ${\bf{r}}'\left( t \right) = \left( { - \sin t,\cos t, - \tan t} \right)$. So, the unit tangent vector is ${\bf{T}}\left( t \right) = \frac{{{\bf{r}}'\left( t \right)}}{{||{\bf{r}}'\left( t \right)||}} = \frac{{\left( { - \sin t,\cos t, - \tan t} \right)}}{{\sqrt {\left( { - \sin t,\cos t, - \tan t} \right)\cdot\left( { - \sin t,\cos t, - \tan t} \right)} }}$ ${\bf{T}}\left( t \right) = \frac{{\left( { - \sin t,\cos t, - \tan t} \right)}}{{\sqrt {{{\sin }^2}t + {{\cos }^2}t + {{\tan }^2}t} }} = \frac{{\left( { - \sin t,\cos t, - \tan t} \right)}}{{\sqrt {1 + {{\tan }^2}t} }}$ Since ${\sec ^2}t - {\tan ^2}t = 1$, so ${\bf{T}}\left( t \right) = \frac{1}{{\sec t}}\left( { - \sin t,\cos t, - \tan t} \right) = \left( { - \frac{1}{2}\sin 2t,{{\cos }^2}t, - \sin t} \right)$ The point $\left( {1,0,0} \right)$ corresponds to $t=0$. So, at $t=0$, we get ${\bf{T}}\left( 0 \right) = \left( {0,1,0} \right)$. The derivative of ${\bf{T}}\left( t \right)$ is ${\bf{T}}'\left( t \right) = \left( { - \cos 2t, - \sin 2t, - \cos t} \right)$ At $t=0$, we get ${\bf{T}}'\left( 0 \right) = \left( { - 1,0, - 1} \right)$. The normal vector at $t=0$: ${\bf{N}}\left( 0 \right) = \frac{{{\bf{T}}'\left( 0 \right)}}{{||{\bf{T}}'\left( 0 \right)||}}$ ${\bf{N}}\left( 0 \right) = \frac{{\left( { - 1,0, - 1} \right)}}{{\sqrt {\left( { - 1,0, - 1} \right)\cdot\left( { - 1,0, - 1} \right)} }} = \frac{1}{{\sqrt 2 }}\left( { - 1,0, - 1} \right)$ ${\bf{N}}\left( 0 \right) = \left( { - \frac{1}{{\sqrt 2 }},0, - \frac{1}{{\sqrt 2 }}} \right)$ By Eq. (8), the binormal vector at $t=0$ is given by ${\bf{B}}\left( 0 \right) = {\bf{T}}\left( 0 \right) \times {\bf{N}}\left( 0 \right)$ ${\bf{B}}\left( 0 \right) = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ 0&1&0\\ { - \frac{1}{{\sqrt 2 }}}&0&{ - \frac{1}{{\sqrt 2 }}} \end{array}} \right|$ ${\bf{B}}\left( 0 \right) = - \frac{1}{{\sqrt 2 }}{\bf{i}} + \frac{1}{{\sqrt 2 }}{\bf{k}}$ In summary, we obtain $\begin{array}{*{20}{c}} {{\bf{T}}\left( 0 \right) = \left( {0,1,0} \right)}\\ {{\bf{N}}\left( 0 \right) = \left( { - \frac{1}{{\sqrt 2 }},0, - \frac{1}{{\sqrt 2 }}} \right)}\\ {{\bf{B}}\left( 0 \right) = \left( { - \frac{1}{{\sqrt 2 }},0,\frac{1}{{\sqrt 2 }}} \right)} \end{array}$ (b) the point $\left( {1,0,0} \right)$ corresponds to $t=0$. In part (a) we obtain ${\bf{B}}\left( 0 \right) = \left( { - \frac{1}{{\sqrt 2 }},0,\frac{1}{{\sqrt 2 }}} \right)$. Thus, by Theorem 1 of Section 13.5, the equation of the osculating plane at the point $\left( {1,0,0} \right)$ is $ - \frac{1}{{\sqrt 2 }}\left( {x - 1} \right) + 0\left( {y - 0} \right) + \frac{1}{{\sqrt 2 }}\left( {z - 0} \right) = 0$ $ - \left( {x - 1} \right) + z = 0$ $ - x + z = - 1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.