Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.4 Curvature - Exercises - Page 736: 53

Answer

(a) $\begin{array}{*{20}{c}} {{\bf{T}}\left( 1 \right) = \left( {\frac{1}{3},\frac{2}{3},\frac{2}{3}} \right)}\\ {{\bf{N}}\left( 1 \right) = \left( { - \frac{2}{3}, - \frac{1}{3},\frac{2}{3}} \right)}\\ {{\bf{B}}\left( 1 \right) = \left( {\frac{2}{3}, - \frac{2}{3},\frac{1}{3}} \right)} \end{array}$ (b) the equation of the osculating plane at the point corresponding to $t=1$: $6x - 6y + 3z = 1$

Work Step by Step

(a) We have ${\bf{r}}\left( t \right) = \left( {t,\frac{4}{3}{t^{3/2}},{t^2}} \right)$. The tangent vector is ${\bf{r}}'\left( t \right) = \left( {1,2{t^{1/2}},2t} \right)$. So, the unit tangent vector is ${\bf{T}}\left( t \right) = \frac{{{\bf{r}}'\left( t \right)}}{{||{\bf{r}}'\left( t \right)||}} = \frac{{\left( {1,2{t^{1/2}},2t} \right)}}{{\sqrt {\left( {1,2{t^{1/2}},2t} \right)\cdot\left( {1,2{t^{1/2}},2t} \right)} }}$ ${\bf{T}}\left( t \right) = \frac{{\left( {1,2{t^{1/2}},2t} \right)}}{{\sqrt {1 + 4t + 4{t^2}} }} = \frac{{\left( {1,2{t^{1/2}},2t} \right)}}{{\sqrt {{{\left( {1 + 2t} \right)}^2}} }}$ ${\bf{T}}\left( t \right) = \left( {\frac{1}{{1 + 2t}},\frac{{2{t^{1/2}}}}{{1 + 2t}},\frac{{2t}}{{1 + 2t}}} \right)$ At $t=1$, we get ${\bf{T}}\left( 1 \right) = \left( {\frac{1}{3},\frac{2}{3},\frac{2}{3}} \right)$. To evaluate ${\bf{T}}'\left( t \right)$: 1. Evaluate $\frac{d}{{dt}}\left( {\frac{1}{{1 + 2t}}} \right)$ $\frac{d}{{dt}}\left( {\frac{1}{{1 + 2t}}} \right) = \frac{d}{{dt}}\left( {{{\left( {1 + 2t} \right)}^{ - 1}}} \right) = - \frac{2}{{{{\left( {1 + 2t} \right)}^2}}}$ 2. Evaluate $\frac{d}{{dt}}\left( {\frac{{2{t^{1/2}}}}{{1 + 2t}}} \right)$ $\frac{d}{{dt}}\left( {\frac{{2{t^{1/2}}}}{{1 + 2t}}} \right) = \frac{{{t^{ - 1/2}}\left( {1 + 2t} \right) - 2{t^{1/2}}\left( 2 \right)}}{{{{\left( {1 + 2t} \right)}^2}}}$ $\frac{d}{{dt}}\left( {\frac{{2{t^{1/2}}}}{{1 + 2t}}} \right) = \frac{{\left( {1 + 2t} \right) - 4t}}{{{t^{1/2}}{{\left( {1 + 2t} \right)}^2}}} = \frac{{1 - 2t}}{{{t^{1/2}}{{\left( {1 + 2t} \right)}^2}}}$ 3. Evaluate $\frac{d}{{dt}}\left( {\frac{{2t}}{{1 + 2t}}} \right)$ $\frac{d}{{dt}}\left( {\frac{{2t}}{{1 + 2t}}} \right) = \frac{{2\left( {1 + 2t} \right) - \left( {2t} \right)\left( 2 \right)}}{{{{\left( {1 + 2t} \right)}^2}}} = \frac{2}{{{{\left( {1 + 2t} \right)}^2}}}$ Thus, ${\bf{T}}'\left( t \right) = \left( { - \frac{2}{{{{\left( {1 + 2t} \right)}^2}}},\frac{{1 - 2t}}{{{t^{1/2}}{{\left( {1 + 2t} \right)}^2}}},\frac{2}{{{{\left( {1 + 2t} \right)}^2}}}} \right)$ At $t=1$, we get ${\bf{T}}'\left( 1 \right) = \left( { - \frac{2}{9}, - \frac{1}{9},\frac{2}{9}} \right)$ $||{\bf{T}}'\left( 1 \right)|{|^2} = \frac{4}{{81}} + \frac{1}{{81}} + \frac{4}{{81}} = \frac{9}{{81}} = \frac{1}{9}$ $||{\bf{T}}'\left( 1 \right)|| = \frac{1}{3}$ The normal vector at $t=1$: ${\bf{N}}\left( 1 \right) = \frac{{{\bf{T}}'\left( 1 \right)}}{{||{\bf{T}}'\left( 1 \right)||}}$ ${\bf{N}}\left( 1 \right) = 3\left( { - \frac{2}{9}, - \frac{1}{9},\frac{2}{9}} \right)$ ${\bf{N}}\left( 1 \right) = \left( { - \frac{2}{3}, - \frac{1}{3},\frac{2}{3}} \right)$ By Eq. (8), the binormal vector at $t=1$ is given by ${\bf{B}}\left( 1 \right) = {\bf{T}}\left( 1 \right) \times {\bf{N}}\left( 1 \right)$ ${\bf{B}}\left( 1 \right) = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ {\frac{1}{3}}&{\frac{2}{3}}&{\frac{2}{3}}\\ { - \frac{2}{3}}&{ - \frac{1}{3}}&{\frac{2}{3}} \end{array}} \right|$ ${\bf{B}}\left( 1 \right) = \left( {\frac{4}{9} + \frac{2}{9}} \right){\bf{i}} - \left( {\frac{2}{9} + \frac{4}{9}} \right){\bf{j}} + \left( { - \frac{1}{9} + \frac{4}{9}} \right){\bf{k}}$ ${\bf{B}}\left( 1 \right) = \frac{2}{3}{\bf{i}} - \frac{2}{3}{\bf{j}} + \frac{1}{3}{\bf{k}}$ In summary, we obtain $\begin{array}{*{20}{c}} {{\bf{T}}\left( 1 \right) = \left( {\frac{1}{3},\frac{2}{3},\frac{2}{3}} \right)}\\ {{\bf{N}}\left( 1 \right) = \left( { - \frac{2}{3}, - \frac{1}{3},\frac{2}{3}} \right)}\\ {{\bf{B}}\left( 1 \right) = \left( {\frac{2}{3}, - \frac{2}{3},\frac{1}{3}} \right)} \end{array}$ (b) In part (a) we get ${\bf{B}}\left( 1 \right) = \left( {\frac{2}{3}, - \frac{2}{3},\frac{1}{3}} \right)$. The point corresponding to $t=1$ is ${\bf{r}}\left( 1 \right) = \left( {1,\frac{4}{3},1} \right)$. Thus, by Theorem 1 of Section 13.5, the equation of the osculating plane at the point corresponding to $t=1$ is $\frac{2}{3}\left( {x - 1} \right) - \frac{2}{3}\left( {y - \frac{4}{3}} \right) + \frac{1}{3}\left( {z - 1} \right) = 0$ $2\left( {x - 1} \right) - 2\left( {y - \frac{4}{3}} \right) + z - 1 = 0$ $6x - 6y + 3z = 1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.