Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.4 Curvature - Exercises - Page 736: 58

Answer

The center of curvature at $t=1$: $\overrightarrow {OQ} = \left( { - \frac{{11}}{2},\frac{{16}}{3}} \right)$

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {{t^2},{t^3}} \right)$. The first and the second derivatives are ${\bf{r}}'\left( t \right) = \left( {2t,3{t^2}} \right)$ and ${\bf{r}}{\rm{''}}\left( t \right) = \left( {2,6t} \right)$, respectively. The unit tangent vector is ${\bf{T}}\left( t \right) = \frac{{{\bf{r}}'\left( t \right)}}{{||{\bf{r}}'\left( t \right)||}}$ ${\bf{T}}\left( t \right) = \frac{{\left( {2t,3{t^2}} \right)}}{{\sqrt {\left( {2t,3{t^2}} \right)\cdot\left( {2t,3{t^2}} \right)} }} = \frac{1}{{\sqrt {4{t^2} + 9{t^4}} }}\left( {2t,3{t^2}} \right)$ ${\bf{T}}\left( t \right) = \left( {\frac{2}{{\sqrt {4 + 9{t^2}} }},\frac{{3t}}{{\sqrt {4 + 9{t^2}} }}} \right)$ To find the derivative of ${\bf{T}}\left( t \right)$: 1. Evaluate $\frac{d}{{dt}}\left( {\frac{2}{{\sqrt {4 + 9{t^2}} }}} \right)$ $\frac{d}{{dt}}\left( {\frac{2}{{\sqrt {4 + 9{t^2}} }}} \right) = \frac{d}{{dt}}\left( {2{{\left( {4 + 9{t^2}} \right)}^{ - 1/2}}} \right)$ $\frac{d}{{dt}}\left( {\frac{2}{{\sqrt {4 + 9{t^2}} }}} \right) = - \frac{{18t}}{{{{\left( {4 + 9{t^2}} \right)}^{3/2}}}}$ 2. Evaluate $\frac{d}{{dt}}\left( {\frac{{3t}}{{\sqrt {4 + 9{t^2}} }}} \right)$ $\frac{d}{{dt}}\left( {\frac{{3t}}{{\sqrt {4 + 9{t^2}} }}} \right) = \frac{{3\sqrt {4 + 9{t^2}} - \left( {3t} \right)\left( {\frac{{18t}}{{2\sqrt {4 + 9{t^2}} }}} \right)}}{{4 + 9{t^2}}}$ $\frac{d}{{dt}}\left( {\frac{{3t}}{{\sqrt {4 + 9{t^2}} }}} \right) = \frac{{3\left( {4 + 9{t^2}} \right) - 27{t^2}}}{{{{\left( {4 + 9{t^2}} \right)}^{3/2}}}} = \frac{{12}}{{{{\left( {4 + 9{t^2}} \right)}^{3/2}}}}$ Thus, ${\bf{T}}'\left( t \right) = \left( { - \frac{{18t}}{{{{\left( {4 + 9{t^2}} \right)}^{3/2}}}},\frac{{12}}{{{{\left( {4 + 9{t^2}} \right)}^{3/2}}}}} \right)$ $||{\bf{T}}'\left( t \right)|{|^2} = \frac{{{{18}^2}{t^2} + {{12}^2}}}{{{{\left( {4 + 9{t^2}} \right)}^3}}} = \frac{{36\left( {4 + 9{t^2}} \right)}}{{{{\left( {4 + 9{t^2}} \right)}^3}}} = \frac{{36}}{{{{\left( {4 + 9{t^2}} \right)}^2}}}$ $||{\bf{T}}'\left( t \right)|| = \frac{6}{{4 + 9{t^2}}}$ The normal vector at $t$ is ${\bf{N}}\left( t \right) = \frac{{{\bf{T}}'\left( t \right)}}{{||{\bf{T}}'\left( t \right)||}}$ ${\bf{N}}\left( t \right) = \left( {\frac{{4 + 9{t^2}}}{6}} \right)\left( { - \frac{{18t}}{{{{\left( {4 + 9{t^2}} \right)}^{3/2}}}},\frac{{12}}{{{{\left( {4 + 9{t^2}} \right)}^{3/2}}}}} \right)$ ${\bf{N}}\left( t \right) = \left( { - \frac{{3t}}{{\sqrt {4 + 9{t^2}} }},\frac{2}{{\sqrt {4 + 9{t^2}} }}} \right)$ Next, we compute the curvature by using Eq. (3) of Theorem 1: $\kappa \left( t \right) = \frac{{||{\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right)||}}{{||{\bf{r}}'\left( t \right)|{|^3}}}$ To apply Theorem 1, we treat ${\bf{r}}'\left( t \right)$ and ${\bf{r}}{\rm{''}}\left( t \right)$ as vectors in ${\mathbb{R}^3}$ by setting the $z$-components equal to zero. Thus, ${\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right) = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ {2t}&{3{t^2}}&0\\ 2&{6t}&0 \end{array}} \right|$ ${\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right) = \left( {12{t^2} - 6{t^2}} \right){\bf{k}} = 6{t^2}{\bf{k}}$ So, $||{\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right)|| = 6{t^2}$. $\kappa \left( t \right) = \frac{{6{t^2}}}{{{{\left( {\sqrt {\left( {2t,3{t^2}} \right)\cdot\left( {2t,3{t^2}} \right)} } \right)}^3}}} = \frac{{6{t^2}}}{{{{\left( {4{t^2} + 9{t^4}} \right)}^{3/2}}}}$ By Eq. (9), the center of the osculating circle is given by $\overrightarrow {OQ} = {\bf{r}}\left( t \right) + \frac{1}{{{\kappa _P}}}{\bf{N}}$ $\overrightarrow {OQ} $ is also called the center of curvature of ${\bf{r}}\left( t \right)$. At $t=1$, the center of curvature is $\overrightarrow {OQ} = {\bf{r}}\left( 1 \right) + \frac{1}{{\kappa \left( 1 \right)}}{\bf{N}}\left( 1 \right)$ $\overrightarrow {OQ} = \left( {1,1} \right) + \frac{{{{13}^{3/2}}}}{6}\left( { - \frac{3}{{\sqrt {13} }},\frac{2}{{\sqrt {13} }}} \right)$ $\overrightarrow {OQ} = \left( {1,1} \right) + \left( { - \frac{{13}}{2},\frac{{13}}{3}} \right) = \left( { - \frac{{11}}{2},\frac{{16}}{3}} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.