Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.4 Curvature - Exercises - Page 736: 60

Answer

At $t=0$, the osculating circle has radius $1$ and centered at $\left( {0,0} \right)$. Thus, the osculating circle can be parametrized by $\left( {\sin t,\cos t} \right)$. Notice that this parametrization coincides with ${\bf{r}}\left( t \right)$.

Work Step by Step

1. Find the radius of the osculating circle We have ${\bf{r}}\left( t \right) = \left( {\sin t,\cos t} \right)$. The first and the second derivatives are ${\bf{r}}'\left( t \right) = \left( {\cos t, - \sin t} \right)$ and ${\bf{r}}{\rm{''}}\left( t \right) = \left( { - \sin t, - \cos t} \right)$, respectively. We compute the curvature by using Eq. (3) of Theorem 1: $\kappa \left( t \right) = \frac{{||{\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right)||}}{{||{\bf{r}}'\left( t \right)|{|^3}}}$ To apply Theorem 1, we treat ${\bf{r}}'\left( t \right)$ and ${\bf{r}}{\rm{''}}\left( t \right)$ as vectors in ${\mathbb{R}^3}$ by setting the $z$-components equal to zero. Thus, ${\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right) = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ {\cos t}&{ - \sin t}&0\\ { - \sin t}&{ - \cos t}&0 \end{array}} \right|$ ${\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right) = \left( {{{\cos }^2}t + {{\sin }^2}t} \right){\bf{k}} = {\bf{k}}$ So, $||{\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right)|| = 1$. $\kappa \left( t \right) = \frac{1}{{{{\left( {\sqrt {\left( {\cos t, - \sin t} \right)\cdot\left( {\cos t, - \sin t} \right)} } \right)}^3}}} = 1$ Since $R = \frac{1}{\kappa }$, so the osculating circle has radius $1$. 2. Find the normal vector The unit tangent vector is ${\bf{T}}\left( t \right) = \frac{{{\bf{r}}'\left( t \right)}}{{||{\bf{r}}'\left( t \right)||}}$ ${\bf{T}}\left( t \right) = \frac{{\left( {\cos t, - \sin t} \right)}}{{\sqrt {\left( {\cos t, - \sin t} \right)\cdot\left( {\cos t, - \sin t} \right)} }} = \left( {\cos t, - \sin t} \right)$ The derivative of ${\bf{T}}\left( t \right)$ is ${\bf{T}}'\left( t \right) = \left( { - \sin t, - \cos t} \right)$ The normal vector at $t$ is ${\bf{N}}\left( t \right) = \frac{{{\bf{T}}'\left( t \right)}}{{||{\bf{T}}'\left( t \right)||}}$ ${\bf{N}}\left( t \right) = \frac{{\left( { - \sin t, - \cos t} \right)}}{{\sqrt {\left( { - \sin t, - \cos t} \right)\cdot\left( { - \sin t, - \cos t} \right)} }} = \left( { - \sin t, - \cos t} \right)$ 3. Find the the center of the osculating circle By Eq. (9), the center of the osculating circle is given by $\overrightarrow {OQ} = {\bf{r}}\left( {{t_0}} \right) + \frac{1}{{{\kappa _P}}}{\bf{N}}$ At $t=0$, the center of curvature is $\overrightarrow {OQ} = {\bf{r}}\left( 0 \right) + \frac{1}{{\kappa \left( 0 \right)}}{\bf{N}}\left( 0 \right)$ $\overrightarrow {OQ} = \left( {0,1} \right) + \left( {0, - 1} \right) = \left( {0,0} \right)$ 4. Parametrize the osculating circle The osculating circle has radius $1$ and centered at $\left( {0,0} \right)$. Thus, the osculating circle can be parametrized by $\left( {\sin t,\cos t} \right)$. Notice that this parametrization coincides with ${\bf{r}}\left( t \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.