Answer
(a)
${\bf{T}}\left( t \right) = \left( {\frac{1}{{\sqrt {2 + 4{t^2}} }}, - \frac{1}{{\sqrt {2 + 4{t^2}} }},\frac{{2t}}{{\sqrt {2 + 4{t^2}} }}} \right)$
${\bf{N}}\left( t \right) = \left( { - \frac{t}{{{{\left( {1 + 2{t^2}} \right)}^{1/2}}}},\frac{t}{{{{\left( {1 + 2{t^2}} \right)}^{1/2}}}},\frac{1}{{{{\left( {1 + 2{t^2}} \right)}^{1/2}}}}} \right)$
(b) ${\bf{B}}\left( t \right) = - \frac{1}{{\sqrt 2 }}{\bf{i}} - \frac{1}{{\sqrt 2 }}{\bf{j}}$
(c) From the result in part (b), we get
1. ${\bf{B}}$ is not a function of $t$, that is, it is constant.
Since ${\bf{B}}$ is perpendicular to the osculating plane, we conclude that the osculating plane is fixed for all $t$.
2. ${\bf{B}}$ is parallel to the $xy$-plane.
Since ${\bf{B}}$ is perpendicular to the osculating plane, we conclude that the osculating plane is perpendicular to the $xy$-plane.
Work Step by Step
(a) We have ${\bf{r}}\left( t \right) = \left( {t,1 - t,{t^2}} \right)$. The tangent vector is ${\bf{r}}'\left( t \right) = \left( {1, - 1,2t} \right)$. So, the unit tangent vector is
${\bf{T}}\left( t \right) = \frac{{\left( {1, - 1,2t} \right)}}{{\sqrt {\left( {1, - 1,2t} \right)\cdot\left( {1, - 1,2t} \right)} }} = \frac{{\left( {1, - 1,2t} \right)}}{{\sqrt {2 + 4{t^2}} }}$
${\bf{T}}\left( t \right) = \left( {\frac{1}{{\sqrt {2 + 4{t^2}} }}, - \frac{1}{{\sqrt {2 + 4{t^2}} }},\frac{{2t}}{{\sqrt {2 + 4{t^2}} }}} \right)$
Find derivative of ${\bf{T}}\left( t \right)$:
1. Evaluate $\frac{d}{{dt}}\left( {\frac{1}{{\sqrt {2 + 4{t^2}} }}} \right)$
$\frac{d}{{dt}}\left( {\frac{1}{{\sqrt {2 + 4{t^2}} }}} \right) = \frac{d}{{dt}}\left( {{{\left( {2 + 4{t^2}} \right)}^{ - 1/2}}} \right)$
$\frac{d}{{dt}}\left( {\frac{1}{{\sqrt {2 + 4{t^2}} }}} \right) = - \frac{{8t}}{{2{{\left( {2 + 4{t^2}} \right)}^{3/2}}}} = - \frac{{4t}}{{{{\left( {2 + 4{t^2}} \right)}^{3/2}}}}$
2. Evaluate $\frac{d}{{dt}}\left( {\frac{{2t}}{{\sqrt {2 + 4{t^2}} }}} \right)$
$\frac{d}{{dt}}\left( {\frac{{2t}}{{\sqrt {2 + 4{t^2}} }}} \right) = \frac{{2\sqrt {2 + 4{t^2}} - \left( {2t} \right)\left( {\frac{{8t}}{{2\sqrt {2 + 4{t^2}} }}} \right)}}{{2 + 4{t^2}}}$
$\frac{d}{{dt}}\left( {\frac{{2t}}{{\sqrt {2 + 4{t^2}} }}} \right) = \frac{{2\left( {2 + 4{t^2}} \right) - 8{t^2}}}{{{{\left( {2 + 4{t^2}} \right)}^{3/2}}}} = \frac{4}{{{{\left( {2 + 4{t^2}} \right)}^{3/2}}}}$
Thus,
${\bf{T}}'\left( t \right) = \left( { - \frac{{4t}}{{{{\left( {2 + 4{t^2}} \right)}^{3/2}}}},\frac{{4t}}{{{{\left( {2 + 4{t^2}} \right)}^{3/2}}}},\frac{4}{{{{\left( {2 + 4{t^2}} \right)}^{3/2}}}}} \right)$
$||{\bf{T}}'\left( t \right)|{|^2} = \frac{{16{t^2}}}{{{{\left( {2 + 4{t^2}} \right)}^3}}} + \frac{{16{t^2}}}{{{{\left( {2 + 4{t^2}} \right)}^3}}} + \frac{{16}}{{{{\left( {2 + 4{t^2}} \right)}^3}}}$
$||{\bf{T}}'\left( t \right)|{|^2} = \frac{{32{t^2} + 16}}{{{{\left( {2 + 4{t^2}} \right)}^3}}} = \frac{{8\left( {2 + 4{t^2}} \right)}}{{{{\left( {2 + 4{t^2}} \right)}^3}}} = \frac{8}{{{{\left( {2 + 4{t^2}} \right)}^2}}}$
$||{\bf{T}}'\left( t \right)|| = \frac{{\sqrt 8 }}{{2 + 4{t^2}}}$
The normal vector at $t$ is
${\bf{N}}\left( t \right) = \frac{{{\bf{T}}'\left( t \right)}}{{||{\bf{T}}'\left( t \right)||}}$
${\bf{N}}\left( t \right) = \left( {\frac{{2 + 4{t^2}}}{{\sqrt 8 }}} \right)\left( { - \frac{{4t}}{{{{\left( {2 + 4{t^2}} \right)}^{3/2}}}},\frac{{4t}}{{{{\left( {2 + 4{t^2}} \right)}^{3/2}}}},\frac{4}{{{{\left( {2 + 4{t^2}} \right)}^{3/2}}}}} \right)$
${\bf{N}}\left( t \right) = \left( { - \frac{{2t}}{{\sqrt 2 {{\left( {2 + 4{t^2}} \right)}^{1/2}}}},\frac{{2t}}{{{{\left( {2 + 4{t^2}} \right)}^{1/2}}}},\frac{2}{{{{\left( {2 + 4{t^2}} \right)}^{1/2}}}}} \right)$
${\bf{N}}\left( t \right) = \left( { - \frac{t}{{{{\left( {1 + 2{t^2}} \right)}^{1/2}}}},\frac{t}{{{{\left( {1 + 2{t^2}} \right)}^{1/2}}}},\frac{1}{{{{\left( {1 + 2{t^2}} \right)}^{1/2}}}}} \right)$
(b) In part (a) we obtain
${\bf{T}}\left( t \right) = \left( {\frac{1}{{\sqrt {2 + 4{t^2}} }}, - \frac{1}{{\sqrt {2 + 4{t^2}} }},\frac{{2t}}{{\sqrt {2 + 4{t^2}} }}} \right)$
${\bf{N}}\left( t \right) = \left( { - \frac{t}{{{{\left( {1 + 2{t^2}} \right)}^{1/2}}}},\frac{t}{{{{\left( {1 + 2{t^2}} \right)}^{1/2}}}},\frac{1}{{{{\left( {1 + 2{t^2}} \right)}^{1/2}}}}} \right)$
By Eq. (8), the binormal vector ${\bf{B}}$ as a function of t is given by
${\bf{B}}\left( t \right) = {\bf{T}}\left( t \right) \times {\bf{N}}\left( t \right)$
${\bf{B}}\left( t \right) = \left| {\begin{array}{*{20}{c}}
{\bf{i}}&{\bf{j}}&{\bf{k}}\\
{\frac{1}{{\sqrt {2 + 4{t^2}} }}}&{ - \frac{1}{{\sqrt {2 + 4{t^2}} }}}&{\frac{{2t}}{{\sqrt {2 + 4{t^2}} }}}\\
{ - \frac{t}{{{{\left( {1 + 2{t^2}} \right)}^{1/2}}}}}&{\frac{t}{{{{\left( {1 + 2{t^2}} \right)}^{1/2}}}}}&{\frac{1}{{{{\left( {1 + 2{t^2}} \right)}^{1/2}}}}}
\end{array}} \right|$
${\bf{B}}\left( t \right) = \left( { - \frac{1}{{\sqrt 2 \left( {1 + 2{t^2}} \right)}} - \frac{{2{t^2}}}{{\sqrt 2 \left( {1 + 2{t^2}} \right)}}} \right){\bf{i}}$
$ - \left( {\frac{1}{{\sqrt 2 \left( {1 + 2{t^2}} \right)}} + \frac{{2{t^2}}}{{\sqrt 2 \left( {1 + 2{t^2}} \right)}}} \right){\bf{j}} + \left( {\frac{t}{{\sqrt 2 \left( {1 + 2{t^2}} \right)}} - \frac{t}{{\sqrt 2 \left( {1 + 2{t^2}} \right)}}} \right){\bf{k}}$
${\bf{B}}\left( t \right) = \left( { - \frac{{1 + 2{t^2}}}{{\sqrt 2 \left( {1 + 2{t^2}} \right)}}} \right){\bf{i}} - \left( {\frac{{1 + 2{t^2}}}{{\sqrt 2 \left( {1 + 2{t^2}} \right)}}} \right){\bf{j}}$
${\bf{B}}\left( t \right) = - \frac{1}{{\sqrt 2 }}{\bf{i}} - \frac{1}{{\sqrt 2 }}{\bf{j}}$
(c) In part (b), we obtain ${\bf{B}}\left( t \right) = - \frac{1}{{\sqrt 2 }}{\bf{i}} - \frac{1}{{\sqrt 2 }}{\bf{j}}$. We notice that:
1. ${\bf{B}}$ is not a function of $t$, that is, it is constant.
Since ${\bf{B}}$ is perpendicular to the osculating plane, we conclude that the osculating plane is fixed for all $t$.
2. ${\bf{B}}$ is parallel to the $xy$-plane.
Since ${\bf{B}}$ is perpendicular to the osculating plane, we conclude that the osculating plane is perpendicular to the $xy$-plane.