Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.4 Curvature - Exercises - Page 736: 51

Answer

The normal vector ${\bf{N}}\left( t \right)$ at $t=0$: ${\bf{N}}\left( 0 \right) = \left( { - \frac{1}{{\sqrt 6 }},\sqrt {\frac{2}{3}} , - \frac{1}{{\sqrt 6 }}} \right)$

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {t,{{\rm{e}}^t},t} \right)$. The derivatives are ${\bf{r}}'\left( t \right) = \left( {1,{{\rm{e}}^t},1} \right)$ and ${\bf{r}}{\rm{''}}\left( t \right) = \left( {0,{{\rm{e}}^t},0} \right)$. Let ${\rm{v}}\left( t \right) = ||{\bf{r}}'\left( t \right)||$. So, ${\rm{v}}\left( t \right) = \sqrt {2 + {{\rm{e}}^{2t}}} $ $v'\left( t \right) = \frac{{{{\rm{e}}^{2t}}}}{{\sqrt {2 + {{\rm{e}}^{2t}}} }}$ Evaluate the term $v\left( t \right){\bf{r}}{\rm{''}}\left( t \right) - v'\left( t \right){\bf{r}}'\left( t \right)$ at $t=0$: $v\left( 0 \right){\bf{r}}{\rm{''}}\left( 0 \right) - v'\left( 0 \right){\bf{r}}'\left( 0 \right) = \sqrt 3 \left( {0,1,0} \right) - \frac{1}{{\sqrt 3 }}\left( {1,1,1} \right)$ $v\left( 0 \right){\bf{r}}{\rm{''}}\left( 0 \right) - v'\left( 0 \right){\bf{r}}'\left( 0 \right) = \left( { - \frac{1}{{\sqrt 3 }},\sqrt 3 - \frac{1}{{\sqrt 3 }}, - \frac{1}{{\sqrt 3 }}} \right)$ By Eq. (12), the normal vector ${\bf{N}}\left( t \right)$ at $t=0$ is given by ${\bf{N}}\left( 0 \right) = \frac{{v\left( 0 \right){\bf{r}}{\rm{''}}\left( 0 \right) - v'\left( 0 \right){\bf{r}}'\left( 0 \right)}}{{||v\left( 0 \right){\bf{r}}{\rm{''}}\left( 0 \right) - v'\left( 0 \right){\bf{r}}'\left( 0 \right)||}}$ ${\bf{N}}\left( 0 \right) = \frac{{\left( { - \frac{1}{{\sqrt 3 }},\sqrt 3 - \frac{1}{{\sqrt 3 }}, - \frac{1}{{\sqrt 3 }}} \right)}}{{||\left( { - \frac{1}{{\sqrt 3 }},\sqrt 3 - \frac{1}{{\sqrt 3 }}, - \frac{1}{{\sqrt 3 }}} \right)||}}$ ${\bf{N}}\left( 0 \right) = \left( { - \frac{1}{{\sqrt 6 }},\sqrt {\frac{2}{3}} , - \frac{1}{{\sqrt 6 }}} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.