Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.4 Curvature - Exercises - Page 736: 52

Answer

The normal vector ${\bf{N}}\left( t \right)$ at $t=0$: ${\bf{N}}\left( 0 \right) = \left( {\frac{1}{{\sqrt 5 }},0,\frac{2}{{\sqrt 5 }}} \right)$

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {\cosh t,\sinh t,{t^2}} \right)$. The derivatives are ${\bf{r}}'\left( t \right) = \left( {\sinh t,\cosh t,2t} \right)$ and ${\bf{r}}{\rm{''}}\left( t \right) = \left( {\cosh t,\sinh t,2} \right)$. Let ${\rm{v}}\left( t \right) = ||{\bf{r}}'\left( t \right)||$. So, ${\rm{v}}\left( t \right) = \sqrt {{{\sinh }^2}t + {{\cosh }^2}t + 4{t^2}} $ $v'\left( t \right) = \frac{{2\sinh t\cosh t + 2\cosh t\sinh t + 8t}}{{2\sqrt {{{\sinh }^2}t + {{\cosh }^2}t + 4{t^2}} }}$ $v'\left( t \right) = \frac{{2\sinh t\cosh t + 4t}}{{\sqrt {{{\sinh }^2}t + {{\cosh }^2}t + 4{t^2}} }}$ Evaluate $v\left( t \right){\bf{r}}{\rm{''}}\left( t \right) - v'\left( t \right){\bf{r}}'\left( t \right)$ at $t=0$: $v\left( 0 \right){\bf{r}}{\rm{''}}\left( 0 \right) - v'\left( 0 \right){\bf{r}}'\left( 0 \right) = \left( {1,0,2} \right) - 0\left( {0,1,0} \right)$ $v\left( 0 \right){\bf{r}}{\rm{''}}\left( 0 \right) - v'\left( 0 \right){\bf{r}}'\left( 0 \right) = \left( {1,0,2} \right)$ By Eq. (12), the normal vector ${\bf{N}}\left( t \right)$ at $t=0$ is given by ${\bf{N}}\left( 0 \right) = \frac{{v\left( 0 \right){\bf{r}}{\rm{''}}\left( 0 \right) - v'\left( 0 \right){\bf{r}}'\left( 0 \right)}}{{||v\left( 0 \right){\bf{r}}{\rm{''}}\left( 0 \right) - v'\left( 0 \right){\bf{r}}'\left( 0 \right)||}}$ ${\bf{N}}\left( 0 \right) = \frac{{\left( {1,0,2} \right)}}{{||\left( {1,0,2} \right)||}}$ ${\bf{N}}\left( 0 \right) = \left( {\frac{1}{{\sqrt 5 }},0,\frac{2}{{\sqrt 5 }}} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.