Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.1 Parametric Equations - Exercises - Page 605: 95

Answer

The area is $A = \frac{2}{3}$.

Work Step by Step

We have $x\left( t \right) = \sin t$, $x'\left( t \right) = \cos t$, $y\left( t \right) = {\cos ^2}t$. Using Eq. (11) the area is $A = \mathop \smallint \limits_{t = 0}^{\pi /2} {\cos ^2}t\left( {\cos t} \right){\rm{d}}t = \mathop \smallint \limits_{t = 0}^{\pi /2} {\cos ^3}t{\rm{d}}t$. Using Eq. (6) of Section 8.1 we get $A = \mathop \smallint \limits_{t = 0}^{\pi /2} {\cos ^3}t{\rm{d}}t = \frac{1}{3}{\cos ^2}t\sin t|_0^{\pi /2} + \frac{2}{3}\mathop \smallint \limits_{t = 0}^{\pi /2} \cos t{\rm{d}}t = \frac{1}{3}{\cos ^2}t\sin t|_0^{\pi /2} + \frac{2}{3}\sin t|_0^{\pi /2}$ $A = \frac{2}{3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.