Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.1 Parametric Equations - Exercises - Page 605: 82

Answer

The parametrization is $\left( {\frac{{a{t^n}}}{{1 + {t^{2n + 1}}}},\frac{{a{t^{n + 1}}}}{{1 + {t^{2n + 1}}}}} \right)$ for $t \ne - 1$.

Work Step by Step

Similar to the method of Exercise 80, we find the intersection of $y=t\ x$ and the curve by substituting $y=t\ x$ into ${x^{2n + 1}} + {y^{2n + 1}} = a{x^n}{y^n}$, which gives ${x^{2n + 1}} + {t^{2n + 1}}{x^{2n + 1}} = a{x^n}\left( {{t^n}{x^n}} \right)$, ${x^{2n + 1}}\left( {1 + {t^{2n + 1}}} \right) - a{t^n}{x^{2n}} = 0$, ${x^{2n}}\left( {x\left( {1 + {t^{2n + 1}}} \right) - a{t^n}} \right) = 0$. The solutions are $x=0$ or $x = \frac{{a{t^n}}}{{1 + {t^{2n + 1}}}}$ for $t \ne - 1$ Since $y=t x$, for non trivial solution we have $y = \frac{{a{t^{n + 1}}}}{{1 + {t^{2n + 1}}}}$. Thus, the parametrization is $\left( {\frac{{a{t^n}}}{{1 + {t^{2n + 1}}}},\frac{{a{t^{n + 1}}}}{{1 + {t^{2n + 1}}}}} \right)$ for $t \ne - 1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.