Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.1 Parametric Equations - Exercises - Page 605: 88

Answer

$\frac{{{d^2}y}}{{d{x^2}}}{|_{t = \pi /4}} = - 2\sqrt 2 $

Work Step by Step

We have $x'\left( t \right) = - \sin \theta $, $x{\rm{''}}\left( t \right) = - \cos \theta $, $y'\left( t \right) = \cos \theta $, $y{\rm{''}}\left( t \right) = - \sin \theta $. Using Eq. (13) we get $\frac{{{d^2}y}}{{d{x^2}}} = \frac{{x'\left( t \right)y{\rm{''}}\left( t \right) - y'\left( t \right)x{\rm{''}}\left( t \right)}}{{x'{{\left( t \right)}^3}}} = - {\csc ^3}\theta $ $\frac{{{d^2}y}}{{d{x^2}}}{|_{t = \pi /4}} = - 2\sqrt 2 $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.