Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.1 Parametric Equations - Exercises - Page 605: 84

Answer

Substituting $x'\left( t \right)$, $x{\rm{''}}\left( t \right)$, $y'\left( t \right)$ and $y{\rm{''}}\left( t \right)$ into Eq. (13) we get $\frac{{{d^2}y}}{{d{x^2}}} = \frac{{x'\left( t \right)y{\rm{''}}\left( t \right) - y'\left( t \right)x{\rm{''}}\left( t \right)}}{{x'{{\left( t \right)}^3}}} = 2$.

Work Step by Step

Let $c\left( t \right) = \left( {t,{t^2}} \right)$. So, we have $x'\left( t \right) = 1$, $x{\rm{''}}\left( t \right) = 0$, $y'\left( t \right) = 2t$, $y{\rm{''}}\left( t \right) = 2$. Using Eq. (13) we get $\frac{{{d^2}y}}{{d{x^2}}} = \frac{{x'\left( t \right)y{\rm{''}}\left( t \right) - y'\left( t \right)x{\rm{''}}\left( t \right)}}{{x'{{\left( t \right)}^3}}} = 2$. Let $c\left( t \right) = \left( {{t^3},{t^6}} \right)$. So, we have $x'\left( t \right) = 3{t^2}$, $x{\rm{''}}\left( t \right) = 6t$, $y'\left( t \right) = 6{t^5}$, $y{\rm{''}}\left( t \right) = 30{t^4}$. Using Eq. (13) we get $\frac{{{d^2}y}}{{d{x^2}}} = \frac{{x'\left( t \right)y{\rm{''}}\left( t \right) - y'\left( t \right)x{\rm{''}}\left( t \right)}}{{x'{{\left( t \right)}^3}}} = 2$. Let $c\left( t \right) = \left( {\tan t,{{\tan }^2}t} \right)$. So, we have $x'\left( t \right) = {\sec ^2}t$, $x{\rm{''}}\left( t \right) = 2{\sec ^2}t\tan t$, $y'\left( t \right) = 2{\sec ^2}t\tan t$, $y{\rm{''}}\left( t \right) = 2{\sec ^4}t + 4{\sec ^2}t{\tan ^2}t$. Using Eq. (13) we get $\frac{{{d^2}y}}{{d{x^2}}} = \frac{{x'\left( t \right)y{\rm{''}}\left( t \right) - y'\left( t \right)x{\rm{''}}\left( t \right)}}{{x'{{\left( t \right)}^3}}} = 2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.