Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.1 Parametric Equations - Exercises - Page 605: 90

Answer

The curve is concave up for the $t$-intervals: $t < - \frac{1}{{{2^{1/3}}}}$ and $t>0$.

Work Step by Step

We have $x\left( t \right) = {t^2}$ and $y\left( t \right) = {t^4} - 4t$. So, $x'\left( t \right) = 2t$, $x{\rm{''}}\left( t \right) = 2$, $y'\left( t \right) = 4{t^3} - 4$, $y{\rm{''}}\left( t \right) = 12{t^2}$. Using Eq. (13) we get $\frac{{{d^2}y}}{{d{x^2}}} = \frac{{x'\left( t \right)y{\rm{''}}\left( t \right) - y'\left( t \right)x{\rm{''}}\left( t \right)}}{{x'{{\left( t \right)}^3}}} = \frac{{1 + 2{t^3}}}{{{t^3}}}$. By Theorem 1 of Section 4.4, the curve is concave up if $\frac{{{d^2}y}}{{d{x^2}}} > 0$. So we solve $\frac{{1 + 2{t^3}}}{{{t^3}}} > 0$. Case 1: $t<0$, then $1+2 t^3<0$ such that $\frac{{1 + 2{t^3}}}{{{t^3}}} > 0$. $1 + 2{t^3} < 0$, $2{t^3} < - 1$, ${t^3} < - \frac{1}{2}$. Thus, the solution is $t < - \frac{1}{{{2^{1/3}}}}$. Case 2: $t>0$, then $1+2 t^3>0$ such that $\frac{{1 + 2{t^3}}}{{{t^3}}} > 0$. $1 + 2{t^3} > 0$, $2{t^3} > - 1$, ${t^3} > - \frac{1}{2}$. $t > - \frac{1}{{{2^{1/3}}}}$. Thus, the solution is $t>0$. From case 1 and case 2 we conclude that the curve is concave up for the $t$-intervals: $t < - \frac{1}{{{2^{1/3}}}}$ and $t>0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.