Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.1 Parametric Equations - Exercises - Page 605: 81

Answer

The asymptote of the folium is the line $x+y=-a$ as is shown in Figure 24.

Work Step by Step

From the result in Exercise 81 (a) we obtain the parametrization of the folium of Descartes: $c\left( t \right) = \left( {\frac{{3at}}{{1 + {t^3}}},\frac{{3a{t^2}}}{{1 + {t^3}}}} \right)$. Note that $t=-1$ is a point of discontinuity of the parametrization. Figure 24 suggests that the asymptote of the folium is a line of the form $(x+y)$. So, it is natural to find the limit of $(x+y)$ as $t$ approaches -1. $\mathop {\lim }\limits_{t \to - 1} {\mkern 1mu} (x + y) = \mathop {\lim }\limits_{t \to - 1} {\mkern 1mu} \frac{{3at+3a{t^2}}}{{1+{t^3}}}$ Using the L'Hôpital's Rule twice the limit becomes $\mathop {\lim }\limits_{t \to - 1} \left( {x + y} \right)$ $= \mathop {\lim }\limits_{t \to - 1} \left( {\frac{{3at + 3a{t^2}}}{{1 + {t^3}}}} \right)$ $= \mathop {\lim }\limits_{t \to - 1} \left( {\frac{{3a + 6at}}{{3{t^2}}}} \right)$ $= \mathop {\lim }\limits_{t \to - 1} \left( {\frac{{6a}}{{6t}}} \right)$ $= \mathop {\lim }\limits_{t \to - 1} \left( {\frac{a}{t}} \right)$ Now, we evaluate this limit as $t$ approaches -1 from the left and from the right: $\mathop {\lim }\limits_{t \to - 1 - } \left( {x + y} \right) = \mathop {\lim }\limits_{t \to - 1 - } \left( {\frac{a}{t}} \right) = - a$ $\mathop {\lim }\limits_{t \to - 1 + } \left( {x + y} \right) = \mathop {\lim }\limits_{t \to - 1 + } \left( {\frac{a}{t}} \right) = - a$ So, the equation $x+y=-a$ as $t$ approaches $-1$ is a line, where the slope is -1. Next, we confirm our results by evaluating the slope of the tangent line of $c\left( t \right) = \left( {\frac{{3at}}{{1 + {t^3}}},\frac{{3a{t^2}}}{{1 + {t^3}}}} \right)$ as $t$ approaches $-1$. Using Eq. (8) the slope of the tangent line is $\frac{{dy}}{{dx}} = \frac{{y'\left( t \right)}}{{x'\left( t \right)}} = \frac{{6at - 3a{t^4}}}{{3a - 6a{t^3}}}$ So, $\mathop {\lim }\limits_{t \to - 1 - } \frac{{dy}}{{dx}} = \frac{{ - 9a}}{{9a}} = - 1$ $\mathop {\lim }\limits_{t \to - 1 + } \frac{{dy}}{{dx}} = \frac{{ - 9a}}{{9a}} = - 1$ Hence, we conclude that the asymptote of the folium is the line $x+y=-a$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.