Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.1 Exercises - Page 513: 72

Answer

$$\frac{1}{{24}}{e^{3x}} + \frac{3}{8}{e^x} - \frac{3}{8}{e^{ - x}} - \frac{1}{{24}}{e^{ - 3x}} + C$$

Work Step by Step

$$\eqalign{ & \int {{{\left( {\frac{{{e^x} + {e^{ - x}}}}{2}} \right)}^3}} dx \cr & {\text{Expand, recall that }}{\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3} \cr & = \frac{1}{8}\int {\left( {{e^{3x}} + 3{e^{2x}}{e^{ - x}} + 3{e^x}{e^{ - 2x}} + {e^{ - 3x}}} \right)} dx \cr & = \frac{1}{8}\int {\left( {{e^{3x}} + 3{e^x} + 3{e^{ - x}} + {e^{ - 3x}}} \right)} dx \cr & {\text{Integrate}} \cr & = \frac{1}{8}\left( {\frac{1}{3}{e^{3x}} + 3{e^x} - 3{e^{ - x}} - \frac{1}{3}{e^{ - 3x}}} \right) + C \cr & = \frac{1}{{24}}{e^{3x}} + \frac{3}{8}{e^x} - \frac{3}{8}{e^{ - x}} - \frac{1}{{24}}{e^{ - 3x}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.