Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.1 Exercises - Page 513: 50

Answer

$$y = 5 - 4{e^{ - x}}$$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dx}} = 5 - y,{\text{ }}y\left( 0 \right) = 1 \cr & {\text{Separate the variables}} \cr & \frac{{dy}}{{5 - y}} = dx \cr & {\text{Integrate both sides}} \cr & - \ln \left| {5 - y} \right| = x + C{\text{ }}\left( {\bf{1}} \right) \cr & {\text{Use the initial condition }}y\left( 0 \right) = 1 \cr & - \ln \left| {5 - 1} \right| = 0 + C \cr & C = - \ln 4 \cr & {\text{Substitute }}C{\text{ into }}\left( {\bf{1}} \right) \cr & - \ln \left| {5 - y} \right| = x - \ln 4 \cr & {\text{Solve for }}y \cr & {e^{ - \ln \left| {5 - y} \right|}} = {e^{x - \ln 4}} \cr & {e^{\ln {{\left| {5 - y} \right|}^{ - 1}}}} = {e^x}{e^{ - \ln 4}} \cr & \frac{1}{{5 - y}} = \frac{1}{4}{e^x} \cr & 5 - y = 4{e^{ - x}} \cr & y = 5 - 4{e^{ - x}} \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.